Attachment 1: Aircraft, Control and Communications Systems


Arcturus T15/T16 Airframes

The primary fixed wing UAV used by the INL for R&D is the Arcturus T15/T16 airframe (see photo 1).

Photo 1: Arcturus T15/T16
Flight Control Systems and Ground Stations

T15/16s are remotely controlled using a waypoint autonomous/manual system from Cloud Cap Technologies, specifically the Piccolo autopilot and ground station packages. See www.cloudcaptech.com.

Each flight of a single UA is controlled via a single ground station. However, extended flights may hand off control (and Pilot and Observer roles) from one ground station to another to allow constant line of sight over several miles.

Photo 2 shows the Cloud Cap ground station software map with waypoint defined orbits in red. Waypoint autonomous flight uses an on-board GPS for navigation. UA locations are shown as icons on the map by downlinking GPS and other telemetry.

The Cloud Cap avionics package provides the capabilities of a high-end autopilot at a significantly lower cost. A standard autopilot system consists of the Piccolo plus avionics and a ground control station. Key features of the autopilot system include:

- Programmable GPS waypoint navigation
- Altitude and airspeed hold
- Auto Assist flight modes
- Full integration with 3-axis gyros, accelerometers, a GPS receiver, and pressure sensors all on a single circuit board
Idaho National Laboratory FAA UA Certificate of Authorization Application 07/31/07

- Integrated 900 MHz RF link
- Ground and in-flight programmable flight plan
- Control of lights, parachute deployment, autonomous drop function, and brakes (to be exploited for camera control)
- Programmable flight termination
- Access to flight controls via secondary serial interface

Included with the autopilot system is ground-control software that offers the user a “... friendly point and click interface for mission planning” that runs on a Windows-based computer or laptop. If line-of-sight control is maintained, the software allows the operator to monitor and log vehicle telemetry data, change waypoints, upload new flight plans, initiate holding patterns, and adjust feedback loops, all while the UAV is in flight.

The INL has developed a mobile version of the ground control station to allow the UA PIC and Observer to follow UA flights to maintain line-of-sight. Photo 3 shows the mobile ground station.

Communications

Cloud Cap systems use unregulated (Instrumentation, Scientific & Medical ISM band) low power radio frequency links for command and control of the UA from the ground. The INL also has an on-site dedicated cellular communication infrastructure for research and development. It may be used as the
communications medium. The INL may also use military or other frequency radios during R&D. If so, all frequencies used are approved by the INL site frequency manager.

The INL is an National Telecommunications and Information Administration (NTIA, federal executive branch agency) Wireless Experimental Station and it's RF spectrum is managed in accordance with NTIA's rules and regulation for emittance of RF energy.