
Nos. 2017-1118, 2017-1202

IN THE

United States Court of Appeals
for the Federal Circuit

ORACLE AMERICA, INC.,
Plaintiff-Appellant,

v.

GOOGLE, INC.,
Defendant-Appellee,

Appeals from the United States District Court for the Northern
District of California in No. 10-CV-3561, Judge William H. Alsup

BRIEF OF COMPUTER SCIENTISTS
AS AMICI CURIAE IN SUPPORT OF

DEFENDANT-APPELLEE

Phillip R. Malone
Jef Pearlman
Juelsgaard Intellectual Property and

Innovation Clinic
Mills Legal Clinic at Stanford Law

School
559 Nathan Abbott Way
Stanford, CA 94305-8610
Telephone: 650-725-6369
Fax: 650-723-4426

Attorneys for Amici Curiae

ii

FORM 9. Certificate of Interest Form 9
Rev. 03/16

UNITED STATES COURT OF APPEALS FOR THE FEDERAL CIRCUIT
Oracle America, Inc. v. Google, Inc.

f

Case No. 2017-1118, 2017-1202

CERTIFICATE OF INTEREST

Counsel for the:

 (petitioner) (appellant) (respondent) (appellee) (amicus) (name of party)

Public Knowledge and Law Professors

certifies the following (use "None" if applicable; use extra sheets if necessary):

1. Full Name of Party

Represented by me

2. Name of Real Party in interest
(Please only include any real party
in interest NOT identified in
Question 3) represented by me is:

3. Parent corporations and
publicly held companies
that own 10 % or more of

stock in the party

Computer Scientists (See
Attachment on next page)

None None

4. The names of all law firms and the partners or associates that appeared for the party or amicus
now represented by me in the trial court or agency or are expected to appear in this court (and who
have not or will not enter an appearance in this case) are:

Juelsgaard Intellectual Property & Innovation Clinic, Mills Legal Clinic, Stanford Law School: Phillip R. Malone, Jef
Pearlman

May 30, 2017 /s/ Phillip R. Malone

Date Signature of counsel

Please Note: All questions must be answered Phillip R. Malone

Printed name of counsel
cc: Counsel for Amici Curiae

iii

ATTACHMENT TO CERTIFICATE OF INTEREST

List of COMPUTER SCIENTIST Amici Curiae

(In alphabetical order)

1. Harold Abelson
2. Tom Ball
3. Brian Behlendorf
4. Gordon Bell
5. Jon Bentley
6. Matthew Bishop
7. Joshua Bloch
8. Dan Boneh
9. Gilad Bracha
10. Eric Brewer
11. Frederick Brooks
12. Rick Cattell
13. Vinton G. Cerf
14. William Cook
15. Mark Davis
16. Miguel de Icaza
17. Jeffrey Dean
18. L Peter Deutsch
19. Whitfield Diffie
20. David L. Dill
21. Lester Earnest
22. Brendan Eich
23. Dawson Engler
24. Martin Fowler
25. Neal Gafter
26. Robert Harper
27. John Hennessy
28. Tom Jennings
29. Alan Kay
30. Brian Kernighan
31. David Klausner
32. Ray Kurzweil

iv

33. Kin Lane
34. Ed Lazowska
35. Doug Lea
36. Bob Lee
37. Sheng Liang
38. Barbara Liskov
39. Paul Menchini
40. Andrew W. Moore
41. James H. Morris
42. Peter Norvig
43. Martin Odersky
44. Tim Paterson
45. David Patterson
46. Alex Payne
47. Tim Peierls
48. Simon Phipps
49. Bill Pugh
50. Ronald L. Rivest
51. Curtis Schroeder
52. Robert Sedgewick
53. Mary Shaw
54. Barbara Simons
55. Dave Snigier
56. Alfred Z. Spector
57. Bjarne Stroustrup
58. Gerald Jay Sussman
59. Ivan E. Sutherland
60. Andrew Tanenbaum
61. Brad Templeton
62. Ken Thompson
63. Michael Tiemann
64. Linus Torvalds
65. Andrew Tridgell
66. Jeffrey Ullman
67. Andries van Dam
68. Guido van Rossum
69. John Villasenor
70. Jan Vitek

v

71. Philip Wadler
72. James H. Waldo
73. Dan Wallach
74. Peter Weinberger
75. Steve Wozniak
76. Frank Yellin

vi

TABLE OF CONTENTS

CERTIFICATE OF INTEREST ... ii

ATTACHMENT TO CERTIFICATE OF INTEREST iii

TABLE OF CONTENTS ... vi

TABLE OF AUTHORITIES .. viii

STATEMENT OF INTEREST ... 1

SUMMARY OF ARGUMENT .. 3

ARGUMENT ... 4

I. The Software Industry Has Long Relied on Freely
Reimplementing Existing APIs. ... 4

A. API Reimplementation is Fundamental to the Very Concept
of APIs. .. 5

B. The Free Reimplementation of APIs Drives Innovation by
Promoting Software Interoperability. ... 8

C. Freely Reimplementable Interfaces Were Essential to the
Development of Various Computer Technologies. 10

II. API Reimplementation Encourages Innovation, Competition, and
Interoperability, Fulfilling the Public Policy Goals of Copyright
and Fair Use. ... 14

A. Copyright and Fair Use are Designed to Incentivize Creation
and Innovation. ... 14

B. Copyright Law Provides Specific Carve-Outs for
Interoperability in Computer Software. 15

C. Overturning the Decision Below Would Stifle Innovation and
Disrupt Well-Settled Industry Practices. 18

1. API Reimplementation Enables Intersystem
Consistency, Which Preserves Investment in Knowledge
and Encourages Standardization. 19

2. The Freedom to Reimplement APIs Encourages
Competition and Innovation, and Reduces the Potential
for Lock-In and Fragmentation. ... 21

vii

III. Because APIs are Inherently Functional, the Second Fair Use
Factor Weighs Strongly in Favor of Fair Use and Should Guide
the Remaining Fair Use Analysis. .. 23

A. Computer Software’s Functional Nature Must Guide the
Rest of the Fair Use Inquiry. ... 24

B. APIs are an Integral Part of the Unprotected Java
Programming Language, Serve a Predominantly Functional
Purpose, and Allow for Interoperability. 25

IV. Android’s Incorporation of Java APIs Is Fair Use Because It Is
Transformative and Achieves Substantial Interoperability. 28

A. Oracle’s Constrained Interpretation of Transformative Use
is Unworkable in Software. .. 28

B. Android Reimplements Java APIs in a New Context and Is
Tailored for New Uses and Constraints. 30

C. Android’s Use of Java APIs Enables Interoperability. 32

D. Android’s Use of Java APIs Was Necessary to Achieve Its
Purpose. ... 34

CONCLUSION ... 36

APPENDIX—LIST OF AMICI CURIAE ... A-1

viii

TABLE OF AUTHORITIES

CASES

Apple Computer, Inc. v. Franklin Computer Corp, 714 F.2d 1240 (3d Cir.
1983) .. 10

Feist Publications, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340 (1991) 14

Lotus v. Borland, 49 F.3d 807 (1st Cir. 1995), aff’d, 516 U.S. 233 (1996)
 .. 16, 17, 18

Oracle Am., Inc. v. Google Inc., 750 F.3d 1339 (Fed. Cir. 2014) 17, 20, 25,
27

Oracle Am., Inc. v. Google Inc., No. C 10-03561 WHA, 2016 WL 3181206
(N.D. Cal. June 8, 2016) .. 8

Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992), as
amended (Jan. 6, 1993) ... 15

Sony Computer Entm’t, Inc v. Connectix Corp. 203 F.3d 596 (9th Cir.
2000) .. 16

STATUTES

17 U.S.C. § 107 (2015) .. 14, 24

17 U.S.C. § 1201(f)(1) (2015) .. 16

CONSTITUTIONS

U.S. Const. art. I, § 8, cl. 8 ... 14

OTHER AUTHORITIES

About Samba, https://www.samba.org (last visited May 30, 2017) 7

Brief of Amici Curiae Computer Scientists in Support of Petitioner,
Google, Inc. v. Oracle Am., Inc., 135 S. Ct. 2887 (2015) (No. 14-410),
2014 WL 5868950 .. 5

ix

C Run-Time Libraries, Microsoft Developer Network,
http://msdn.microsoft.com/en-us/library/ abx4dbyh(v=vs.80).aspx (last
visited May 30, 2017) .. 12

Clark D. Asay, Software’s Copyright Anticommons,
66 Emory L.J. 265 (2017) .. 15, 23, 32, 35

Clark D. Asay, Transformative Use in Software,
70 Stan. L. Rev. Online 9 (2017) .. 25, 29

Claudio Giachetti, Competitive Dynamics in the Mobile Phone Industry
(2013) ... 30

David R. Owen, Interfaces and Interoperability in Lotus v. Borland: A
Market-Oriented Approach to the Fair Use Doctrine,
64 Fordham L. Rev. 2381 (1996) .. 8

Ed Burnette, Patrick Brady dissects Android,
ZDNet (June 4, 2008), http://www.zdnet.com/article/patrick-brady-
dissects-android ... 12

Edward Lee, Technological Fair Use,
83 S. Cal. L. Rev. 797 (2010) ... 28

GNU, The GNU C Library (glibc),
https://www.gnu.org/software/libc (last visited May 30, 2017) 12

Greg Williams, Lotus Development Corporation’s 1-2-3,
Byte Magazine, Dec. 1982 ... 10

James Langdell, Phoenix Says Its BIOS May Foil IBM’s Lawsuits,
PC Magazine, July 1984 ... 11

Jonathan Schwartz, Congratulations Google, Red Hat and the Java
Community!,
Jonathan’s Blog (Nov. 5, 2007), http://web.archive.org/web/
20101023072550/http://blogs.sun.com/jonathan/entry/
congratulations_google ... 14

Mark Dahmke, The Compaq Portable,
Byte Magazine, Jan. 1983 ... 11

x

Oren Bracha & Talha Syed, Beyond Efficiency: Consequence-Sensitive
Theories of Copyright,
29 Berkeley Tech. L.J. 229 (2014) .. 19

Peter S. Menell, An Analysis of the Scope of Copyright Protection for
Application Programs,
41 Stan. L. Rev. 1045 (1989) ... 16

Peter S. Menell, Rise of the API Copyright Dead?: An Updated Epitaph
for Copyright Protection of Network and Functional Features of
Computer Software
(UC Berkeley Pub. Law Research, Paper No. 2893192),
https://ssrn.com/abstract=2893192 .. 10, 17, 21

Robert Sedgewick & Kevin Wayne, Algorithms
(4th ed. 2011) ... 5, 26

Ryan Paul, Why Google Chose the Apache Software License Over GPLv2
for Android,
Ars Technica (Nov. 6, 2007, 7:26 AM), https://arstechnica.com/
?post_type=post&p=79053 .. 34

Stephen Cass, The 2016 Top Programming Languages,
IEEE Spectrum (July 26, 2016, 16:00 GMT), http://spectrum.ieee.org/
computing/software/the-2016-top-programming-languages 11

Uri Sarid, A Non-Apocalypse: APIs, Copyright, and Fair Use,
Wired (May 13, 2014 10:01 AM), https://www.wired.com/insights/
2014/05/non-apocalypse-apis-copyright-fair-use 22

WineHQ, About Wine, https://www.winehq.org/about (last visited May
30, 2017) .. 13

1

STATEMENT OF INTEREST1

Amici are 76 individual computer scientists, engineers, and

professors who are pioneering and influential figures in the computer

industry.2 Amici include the architects of iconic computers from the

mainframe, minicomputer, and microcomputer eras, including the IBM

S/360, DEC Vax, and Apple II; languages such as AppleScript, AWK, C,

C++, Go, Haskell, JavaScript, Python, Scala, Scheme, Standard ML,

and Smalltalk; and operating systems such as MS-DOS, Unix, and

Linux. Amici are responsible for key advances in the field, such as

computer graphics, cloud computing, public key cryptography, object-

oriented programming, virtual reality, and the Internet itself. Amici

wrote the standard college textbooks in areas including artificial

intelligence, algorithms, computer architecture, computer graphics,

1 No party or party’s counsel authored any part of this brief or
contributed money towards its preparation or submission. No one, other
than amici and their counsel, contributed money towards the
preparation or submission of this brief. Pursuant to Fed. R. App. P.
29(a), all parties have consented to the filing of this brief.
2 Amici’s biographies are attached as Appendix—List of Amici Curiae,
and also can be found at https://law.stanford.edu/list-of-amici-curiae-in-
oracle-america-inc-v-google-inc. Amici wish to thank Stanford Law
School Juelsgaard Intellectual Property and Innovation Clinic Certified
Law Students Daniel Chao and Robert Paris for their substantial
assistance in drafting this brief.

2

computer security, data structures, functional programming, Java

programming, operating systems, software engineering, and the theory

of programming languages.

 Amici have been widely recognized for their achievements. They

include at least 8 Association for Computing Machinery (ACM) Turing

Award winners (computer science’s most prestigious award); 31 ACM

Fellows; 14 Institute of Electrical and Electronics Engineers (IEEE)

Fellows; 20 American Academy of Arts and Sciences (AAAS) Fellows; 7

National Academy of Sciences Members; 24 National Academy of

Engineering Members; 7 National Medal of Technology recipients; and

numerous professors at many of the world’s leading universities.

 Amici have joined this brief because they believe the jury and the

District Court correctly decided that Google’s reimplementation of the

Java application programming interfaces (APIs) was fair use. As

computer scientists, amici have relied on API reimplementations and

the programs built on them to create and operate new software. Amici

have an interest in seeing copyright law evolve in a way that furthers

3

creativity and enables continued vigorous innovation.3 Furthermore,

amici depend on APIs remaining open to sustain widespread

compatibility standards used by startups and incumbents alike.

Reversing the District Court would dangerously undermine the settled

expectations of computer scientists and the entire computer industry

that rely upon the open nature of APIs.

SUMMARY OF ARGUMENT

The software industry has long relied on and benefitted from the

open nature of application programming interfaces (APIs). This

openness enabled innovations in computing hardware, operating

systems, programming languages, internet network protocols, and cloud

computing. The long-standing and prevailing industry custom is open

access to API reimplementation. Affirming the principle that API

reimplementation is fair use will sustain interoperability, encourage

innovation, and discourage lock-in.

Though this Court previously held that APIs are copyrightable, it

remanded the case because of the open question of fair use, stressing in

3 Many of the amici here previously filed an amicus brief in the prior
appeal of this case, arguing that APIs are not copyrightable.

4

particular that the functional nature of software APIs and their role in

interoperability may be relevant to the fair use analysis. On remand, a

jury found that Android’s use of Java APIs was fair use.

This result should be upheld. APIs are inherently functional,

which weighs strongly in favor of fair use and should guide the

remaining fair use analysis. Android is transformative because it

successfully brought the Java language and its APIs into an entirely

new context: smartphones and tablets. Moreover, API

reimplementations enable increased interoperability, favoring fair use.

Overruling the jury’s decision would undermine this long-

established custom and practice that the computer software industry

relies upon so routinely and thoroughly. We urge this Court to affirm

the District Court’s judgment.

ARGUMENT

I. The Software Industry Has Long Relied on Freely
Reimplementing Existing APIs.

Since the birth of modern computing, progress and innovation in

the software industry has been predicated on the free and open nature

of APIs. APIs have always been freely reimplemented by third parties,

5

enabling interoperability and contributing to rapid innovation in

computer technology.4

A. API Reimplementation is Fundamental to the Very
Concept of APIs.

APIs facilitate interaction between two software components.

They are specifications for a set of functionalities independent of how

they are implemented. An API defines what the functionalities are and

how they are used, whereas an API’s implementation specifies how the

functionalities are achieved. A core concept of computing is that APIs

may have multiple implementations, which provides “the freedom to

substitute new and improved implementations.” Robert Sedgewick &

Kevin Wayne, Algorithms 33 (4th ed. 2011). Code using an API can run

on any platform implementing that API, irrespective of the details of

that implementation or platform. In programming languages like Java,

APIs allow programmers to use existing library code as building blocks

for their own applications. Java code that uses Java APIs is compatible

with any platform that implements the relevant APIs.

4 For a more in depth history of API reuse and its importance to the
industry, see Brief of Amici Curiae Computer Scientists in Support of
Petitioner, Google, Inc. v. Oracle Am., Inc., 135 S. Ct. 2887 (2015) (No.
14-410), 2014 WL 5868950.

6

A reimplementation uses an existing interface to create a new tool

or system. To illustrate, a “keytar” can be considered a

reimplementation of the piano keyboard, because it uses an existing

interface (the piano keyboard) on a new instrument. Figure 1. The

wiring beneath the keytar’s keyboard interface and the sound it outputs

differ from that of the original. The keyboard interface can be

implemented by making sounds in different ways. For example, a piano

uses hammers striking strings to produce notes, while a keytar uses

electronic synthesizers to do the same. Similarly, an API

reimplementation uses an existing interface to produce a new and

compatible system.

Figure 1: A keytar.
Computer scientists have freely reimplemented APIs for as long as

APIs have existed, allowing software to evolve and improve around

accepted standards. See Figure 2. For example, Samba is a

reimplementation of Microsoft’s Server Message Block (SMB) protocols,

7

which allows Windows systems to share files and printers across local

networks. Samba expanded SMB by enabling non-Windows systems to

communicate using the SMB protocol as well. About Samba,

https://www.samba.org (last visited May 30, 2017).

API Creator Year Reimplementer Year
FORTRAN
library

IBM 1958 Univac 1961

IBM S/360 ISA IBM 1964 Amdahl Corp. 1970
C standard
library

AT&T/Bell
Labs

1976 Mark Williams Co. 1980

Unix system
calls

AT&T/Bell
Labs

1976 Mark Williams Co. 1980

VT100 Esc Seqs Dec 1978 Heathkit 1980
IBM PC BIOS IBM 1981 Phoenix

Technologies
1984

MS-DOS CLI Microsoft 1981 FreeDOS Project 1998
Hayes AT cmd
set

Hayes Micro 1982 Anchor
Automation

1985

PostScript Adobe 1985 Alladin
Enterprises
(Ghostscript)

1987

SMB Microsoft 1992 Samba Project 1993
Win32 Microsoft 1993 Wine Project 1996
Java 2 class libs Sun 1998 Google/Android 2008
Delicious web
API

Delicious 2003 Pinboard 2009

Figure 2: Examples of APIs reimplemented by third parties.

8

B. The Free Reimplementation of APIs Drives
Innovation by Promoting Software Interoperability.

API reimplementation enables interoperability and innovation.

Interoperability is compatibility between computer systems and can

take multiple forms.

Hardware-software interoperability is the ability of a program to

run on a certain type of hardware. See David R. Owen, Interfaces and

Interoperability in Lotus v. Borland: A Market-Oriented Approach to the

Fair Use Doctrine, 64 Fordham L. Rev. 2381, 2395-96 (1996). Software-

software interoperability refers to the ability of multiple software

components to interact with each other. Id. This includes the ability for

software written for one platform to run on another; for example,

software written for Oracle’s Java can run on Google’s Android

platform. To analogize, music written for the piano can be played (at

least partially) on the keytar. User-software interoperability, also

known as intersystem consistency,5 allows a programmer who has

learned the APIs on one platform to transfer these skills to another. In

5 The District Court distinguished intersystem consistency from
interoperability. See Oracle Am., Inc. v. Google Inc., No. C 10-03561
WHA, 2016 WL 3181206, at *6 n.6 (N.D. Cal. June 8, 2016)

9

the keytar example, a musician familiar with the piano could adapt her

existing knowledge of the keyboard interface to playing the keytar.

Crucially, a computer system is not, as Oracle and its amici

suggest, either interoperable or not. Systems may achieve significant

levels of interoperability without being fully compatible. For example,

Android is highly interoperable with Oracle’s Java. Most libraries, tools,

and frameworks run equally well on Android and Oracle’s Java,

regardless of which platform they were originally written for.

APIs that are reimplemented and widely adopted can become de

facto standards in their industries. The result is two-fold. First,

newcomers need not expend resources to develop brand-new but

redundant standards. Second, industry players compete around a single

standard, allowing them to direct their efforts at improving their

implementations of the standard. API reimplementation focuses

innovation on improving the underlying substance of software through

new or enhanced features.

The market rewards API development. Companies that invest in

API development receive a first-mover advantage, enabling them to

quickly develop relationships with developers and clients. Peter S.

10

Menell, Rise of the API Copyright Dead?: An Updated Epitaph for

Copyright Protection of Network and Functional Features of Computer

Software 161 (UC Berkeley Pub. Law Research, Paper No. 2893192),

https://ssrn.com/abstract=2893192. Additionally, innovators benefit

from a stronger reputation and overall recognition in the industry. Id.

C. Freely Reimplementable Interfaces Were Essential to
the Development of Various Computer Technologies.

The long-standing industry practice of reimplementing existing

APIs has allowed for rapid innovation in computer technology and given

rise to important technologies that would otherwise not exist. IBM’s

first home computer came with the PC Basic Input/Output System

(BIOS), firmware that provided an API to a system’s underlying

hardware. Because of the IBM PC’s success, popular software like the

spreadsheet program Lotus 1-2-3 was written specifically for it. Greg

Williams, Lotus Development Corporation’s 1-2-3, Byte Magazine,

Dec. 1982, at 182.

While competitors like Phoenix Technologies could not directly

copy IBM’s BIOS implementation, see Apple Comput., Inc. v. Franklin

Comput. Corp., 714 F.2d 1240 (3d Cir. 1983), they developed their own

compatible BIOS using clean room design—building their own

11

implementation from scratch. James Langdell, Phoenix Says Its BIOS

May Foil IBM’s Lawsuits, PC Magazine, July 1984, at 56. As a result,

IBM’s API was freely implemented by competitors to create IBM-

compatible PCs able to run compatible software. This directly

contributed to innovation and growth in the PC industry through

cheaper, faster, and more portable computers. See, e.g., Mark Dahmke,

The Compaq Portable, Byte Magazine, Jan. 1983, at 30-36. And because

these computers were interoperable, software developers could

distribute their software widely and compete directly on features and

price. Since APIs have historically been freely reimplemented,

successful APIs often outlive platforms for which they were originally

created. For example, though IBM no longer makes PCs, all

mainstream desktop and laptop PCs run on an implementation of an

API derived from IBM’s standard.

The interoperability of the C programming language helped

establish its ongoing success in the software industry.6 Programs

6 The Institute of Electrical and Electronics Engineers ranked C as the
most popular programming language in 2016. Stephen Cass, The 2016
Top Programming Languages, IEEE Spectrum (July 26, 2016,
16:00 GMT), http://spectrum.ieee.org/computing/software/the-2016-top-
programming-languages.

12

written in C use the C standard library API to execute their functions

and operate the computer on which they run. Though the C

programming language was originally closely tied to the UNIX

operating system, C programmers can now write software for any

system that provides a reimplementation of the C standard library.

Third party implementations7 of the C standard library exist today on

every main operating system, allowing C—as well as the countless

applications, tools, and communities based on C—to flourish.

The Java platform itself reimplemented preexisting APIs for

interoperability as well. The Java math APIs (java.lang.Math) were

largely reimplementations of the C standard library, ensuring that C

programmers could easily migrate to Java. Similarly, the Java “regular

expression” APIs (java.util.regex) were copied from the Perl

7 Microsoft reimplemented the C standard library for Windows as
part of the Microsoft C Run-Time Library. C Run-Time Libraries,
Microsoft Developer Network, http://msdn.microsoft.com/en-us/library/
abx4dbyh(v=vs.80).aspx (last visited May 30, 2017). Google developed
Bionic, an implementation for its Android operating system. Ed
Burnette, Patrick Brady Dissects Android, ZDNet (June 4, 2008),
http://www.zdnet.com/article/patrick-brady-dissects-android. The GNU
Project developed its own library, glibc, for Unix-like operating systems.
GNU, The GNU C Library (glibc), https://www.gnu.org/software/libc
(last visited May 30, 2017).

13

programming language, ensuring that existing regular expressions—

essentially mini-programs that define search patterns—would continue

to work, and that knowledge of Perl regular expressions would transfer

directly to Java.

Interoperability benefits consumers as well. Wine, an open source

project started in 1993, is a compatibility layer that allows Unix-like

operating systems such as Linux and macOS to run software written for

Microsoft Windows. WineHQ, About Wine, https://www.winehq.org/

about (last visited May 30, 2017). Wine achieves this through a

reimplementation of the Windows API—without a license or agreement

from Microsoft. Today, millions of users use Wine to run Windows

software that would otherwise be incompatible with their systems. Id.

The software industry does not, contrary to assertions by Oracle

and its amici, rely on copyright protection for APIs. The general

understanding has always been that the free reimplementation of APIs

is legal and beneficial to the industry. Jonathan Schwartz, the former

CEO of Sun Microsystems, initially applauded Android, Jonathan

Schwartz, Congratulations Google, Red Hat and the Java Community!,

Jonathan’s Blog (Nov. 5, 2007), http://web.archive.org/web/

14

20101023072550/http://blogs.sun.com/jonathan/entry/

congratulations_google, and later testified that the expectation was that

Java APIs were free for competitors to implement. Trial Tr. at 501-20.

II. API Reimplementation Encourages Innovation,
Competition, and Interoperability, Fulfilling the Public
Policy Goals of Copyright and Fair Use.

Allowing third parties to freely reimplement APIs comports with

the goal of copyright law because it promotes rapid innovation,

encourages competition, and allows for interoperability.

A. Copyright and Fair Use are Designed to Incentivize
Creation and Innovation.

The goal of copyright is to incentivize creation and “promote the

Progress of Science and useful Arts.” U.S. Const. art. I, § 8, cl. 8.

Copyright, however, does not protect facts or ideas, or works under a

sweat-of-the-brow theory. Feist Pubs., Inc. v. Rural Tel. Serv. Co., Inc.,

499 U.S. 340, 349-50 (1991). While copyright assures authors the right

to their original expression, “[it] encourages others to build freely upon

the ideas and information conveyed by a work.” Id. at 349-50.

Similarly, fair use promotes creativity and innovation. Fair use is

a flexible and adaptable remedy that permits copying for “uses that

promise to boost, rather than diminish, creativity overall.” Clark D.

15

Asay, Software’s Copyright Anticommons, 66 Emory L.J. 265, 273

(2017). By limiting infringement liability, the fair use doctrine

recognizes that some forms of copying benefit the public good, and that

encouraging such use better serves copyright’s intended goals.

B. Copyright Law Provides Specific Carve-Outs for
Interoperability in Computer Software.

Copyright allows carve-outs for interoperability and the reuse of

standards, particularly in software. Judges and legislators alike have

recognized that these carve-outs are essential to promoting innovation

in deciding reverse-engineering cases, interpreting the idea-expression

dichotomy, and crafting the Digital Millennium Copyright Act’s

(DMCA) anti-circumvention provisions. This backdrop should guide this

Court’s fair use analysis.

Courts and legislators have interpreted fair use in reverse-

engineering cases to allow for interoperability and compatibility. The

Ninth Circuit has held that copying computer code to access a computer

program’s functional elements in order to achieve interoperability is fair

use. Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1527-28 (9th Cir.

1992), as amended (Jan. 6, 1993). Similarly, in Sony Computer

Entertainment, Inc. v. Connectix Corp., the Ninth Circuit held that a

16

form of reverse engineering was fair use. 203 F.3d 596, 598-99 (9th Cir.

2000) (holding Connectix’s reverse engineering of Sony’s basic input-

output system (the BIOS system) was fair use because it allowed

Connectix to produce an interoperable Virtual Game Station, enabling

games designed for Sony PlayStation to be compatible with other

machine platforms). In addition, the DMCA includes legislative carve-

outs for interoperability specifically for reverse engineering when

“necessary to achieve interoperability of an independently created

computer program with other programs.” 17 U.S.C. § 1201(f)(1) (2015).

Courts and scholars have similarly emphasized that software

copyright is afforded less protection due to the functional demands of

copying and reusing software interfaces to achieve interoperability. See

e.g., Peter S. Menell, An Analysis of the Scope of Copyright Protection

for Application Programs, 41 Stan. L. Rev. 1045, 1048 (1989) (arguing

that courts should liberally apply § 102(b)’s idea-expression dichotomy

to software interfaces). Though not an issue on this appeal, courts have

previously held command interfaces in a software program were not

copyrightable. Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 809

(1st Cir. 1995), aff’d, 516 U.S. 233 (1996). The Lotus court emphasized

17

that its decision became “clearer when one considers program

compatibility,” especially with regards to users who “must learn how to

perform the same operation in a different way for each program used.”

Id. at 817-18. Though recognizing the creativity involved in labeling the

structure of the command hierarchy, “once such function names were

learned by programmers, however, they took on tremendous importance

to the user community.” Menell, Rise of the API Dead, supra, at 148.

As applied to software, copyright law’s limiting doctrines have

always recognized the important role of interoperability in computer

software programs. As this Court noted, the copyrightability question

focuses on the “compatibility needs and programming choices of the

party claiming copyright protection,” Oracle Am., Inc. v. Google Inc., 750

F.3d 1339, 1371 (Fed. Cir. 2014), while the interoperability concerns are

“expressly noted” as relevant to the fair use analysis. Id. at 1377. The

backdrop of copyright law’s carve-outs for interoperability is instructive

to this Court’s fair use analysis. Fair use recognizes that some forms of

express copying encourage creativity, competition, and innovation,

which are all served through allowing interoperability.

18

Notably, Judge Boudin, in his concurring opinion in Lotus,

highlighted that notwithstanding the copyrightability decision, copying

the command hierarchy was also a “privileged use,” an analogue to fair

use. Lotus, 49 F.3d at 821 (Boudin, J. concurring). Judge Boudin

emphasized that reusing the existing command hierarchy provided

users familiar with the former interface the “option to exploit their own

prior investment,” while offering new users an “arguably more

attractive” command interface of its own. Id. at 821. The same

underlying goals of interoperability and reuse of programmer

knowledge should guide this Court’s fair use analysis of API

reimplementation.

C. Overturning the Decision Below Would Stifle
Innovation and Disrupt Well-Settled Industry
Practices.

This Court should rule that API reimplementations that achieve

interoperability are fair use. Not only is this conclusion dictated by the

law, but it is critical to quell uncertainty and preserve long-standing

foundations in the software industry. See Oren Bracha & Talha Syed,

Beyond Efficiency: Consequence-Sensitive Theories of Copyright, 29

Berkeley Tech. L.J. 229, 315 n.90 (2014) (“[P]roperly understood and

19

applied fair use can yield a sufficient level of predictability and avoid

chilling effects.”). Fair use for API reimplementations is necessary for

continued innovation in the computing and software industry.

API reimplementations are essential to preserving programmer

mobility and investment in knowledge, preventing lock-in, and

encouraging the development of new features and capabilities.

Restricting reuse of APIs would stifle competition by preventing the

development of interoperable programs and systems. Moreover, a

definitive ruling of fair use will not reduce incentives to create, as API

reimplementation has led to rapid innovation for decades.

1. API Reimplementation Enables Intersystem
Consistency, Which Preserves Investment in
Knowledge and Encourages Standardization.

Fair use for API reimplementations ensures that a programming

language can be used in multiple contexts, and by programmers already

familiar with the language. In creating the Android platform, Google

retained essential Java APIs. While Google changed the underlying

implementation of the APIs, the specifications—including the function

names and the types of inputs and outputs—remained the same. This

20

means that Java programmers can write software for both Oracle’s and

Google’s platforms.

API methods are given straightforward names describing the

functions they achieve. These function names, and their corresponding

labels of inputs and outputs comprise the API. Programmers learn

these functions as part of the language and can apply this knowledge in

any platform that has implemented those APIs. Unrestricted API

reimplementation protects programmers’ reliance on common naming

conventions for widespread functionalities. It prevents fragmentation,

where industry participants use different APIs for the same purpose,

needlessly forcing programmers to learn new interfaces. Instead,

programmers can focus on improving product features and

functionality, which directly benefits consumers.

As this Court has already noted, reimplementing APIs to

“capitalize on a preexisting community of Java programmers” is a fair

use issue. Oracle, 750 F.3d at 1371-72. The Java platform itself

reimplemented APIs from C standard libraries and Perl for ease of use

by programmers familiar with those languages. API reimplementations

21

for the purpose of preserving a programmer’s knowledge investment in

a common vocabulary should be allowed under fair use.

2. The Freedom to Reimplement APIs Encourages
Competition and Innovation, and Reduces the
Potential for Lock-In and Fragmentation.

API reimplementation encourages competition and innovation by

promoting standardized, interoperable platforms, and reduces the risks

of lock-in or fragmentation. Interoperable software interfaces are

especially important because developers and consumers benefit when

their devices and software can communicate seamlessly. However, these

same network effects can become detrimental if APIs cannot be freely

reimplemented. See, e.g., Menell, Rise of the API Dead, supra at 15

(discussing the network effects of computer hardware, software, and

programming languages, and concerns that “companies could use API

strategies to lock-in consumers and lock-out competitors”).

First, restricting API reimplementation can encourage platform

lock-in. Custom and practice in the software space has relied on open

and freely reimplementable APIs, allowing for rapid improvements in

platform functionality and design. The alternative to this regime of

open APIs encourages lock-in of a single API, with limited opportunities

22

to create new platforms or bridge old programming languages with new

hardware, platforms, or functionalities. As competition is locked out,

incumbents are less incentivized to improve their products. Users also

face high costs in switching to newer platforms, even if the new

platform offers significant technological advantages.

Second, restricting API reimplementations can cause

fragmentation. A company considering licensing a costly API may

instead choose to compete by designing its own API. Though the

competing API may be similar in functionality, it would not be

compatible or interoperable. While there are multiple ways of creating

an API, “[t]he last thing the API world needs is more strange and

unique ways to connect services: that slows everything down, introduces

friction that saps the energy from more useful endeavors like testing

out new business models, and leads directly to more error-prone

software.” Uri Sarid, A Non-Apocalypse: APIs, Copyright, and Fair Use,

Wired (May 13, 2014, 10:01 AM), https://www.wired.com/insights/2014/

05/non-apocalypse-apis-copyright-fair-use. The purpose of

reimplementing an API is to maintain continuity within the

23

programming language as a whole and to preserve compatibility of

existing programs and functions on new platforms.

Third, restricting API reimplementation could lead to chilling

effects and underuse of common software because of software’s

interconnected nature. Software creators and programmers build on top

of one another. The resulting layers of rights owners could be

paralyzing for future users who would need to license each software

component, and might be subject to holdup. This paralysis could lead to

the underuse of common platforms and otherwise socially beneficial

resources (what is referred to as the “anticommons” problem). Asay,

Copyright Software Anticommons, supra, at 267-68. The custom and

practice of openly reimplementable APIs, and the resulting rapid

innovation the industry achieved as a result, highlights the detrimental

effect this paralysis could have.

III. Because APIs are Inherently Functional, the Second Fair
Use Factor Weighs Strongly in Favor of Fair Use and
Should Guide the Remaining Fair Use Analysis.

While all four fair use factors support a finding of fair use in this

case, the second factor in particular should drive this Court’s analysis of

what constitutes fair use of software. The second fair use factor

24

considers the “nature of the copyrighted work.” 17 U.S.C. § 107(2)

(2015). Though this factor is often considered later in a court’s fair use

analysis, it is more instructive in the software context to begin with the

nature of APIs, which are essential and functional components of

programming languages.

Reusing APIs helps achieve interoperability among software and

hardware platforms, and is necessary for programmers to make use of

the Java programming language. This same functionality of APIs allows

for innovative reimplementations such as Android that adapted the

Java APIs to new, transformative contexts.

A. Computer Software’s Functional Nature Must Guide
the Rest of the Fair Use Inquiry.

Computer software’s inherent functionality drives both the second

fair use factor and the rest of the fair use inquiry. Computer programs

and their API structures contain functional elements that are “dictated

by considerations of efficiency or other external factors . . . [which]

should be afforded a lower degree of protection than more traditional

25

literary works.” Oracle, 750 F.3d at 1375.8 As this Court has already

noted, Google’s reimplementation of the Java APIs to achieve

interoperability bears heavily on the second fair use factor. Id. at 1377.

The functional nature of APIs is essential to any reimplementation.

Unlike other copyrightable materials, “software’s functional

characteristics make it unlike other copyrightable materials in key

respects—the most important of which is that any given software

component by definition has a singular computing purpose.” Clark D.

Asay, Transformative Use in Software, 70 Stan. L. Rev. Online 9, 17

(2017). The functional nature of APIs is necessarily reused as part of

the language’s core interface. This allows reimplementations to achieve

interoperability.

B. APIs are an Integral Part of the Unprotected Java
Programming Language, Serve a Predominantly
Functional Purpose, and Allow for Interoperability.

APIs are a functional and essential part of the Java language.

Similar to an instruction manual, APIs are documented in any book

8 The Ninth Circuit’s recent decision in Bikram Yoga Collective of India,
L.P. v. Evolation Yoga, LLC, finding a sequence of yoga poses
uncopyrightable, affirmed the principle that functional elements of a
work are considered broadly—and protected narrowly—throughout the
Copyright Act. 803 F.3d 1032, 1034.

26

that teaches a computer programming language. Sedgewick & Wayne,

supra, at 28 (“A critical component of modular programming is

documentation that explains the operation of library methods that are

intended for use by others.”). To a programmer, a strong identifying

feature of any programming language is the set of API methods being

invoked. Both technically and practically, the core APIs of a language

are inseparable from the language.

To make effective use of the Java language, Android had to

reimplement more than just the API packages mentioned in the Java

language specification, because API packages are interdependent. The

APIs at issue in this case, like all APIs, are specifications: they provide

instructions for how one module in a system interacts with others in the

system, providing the names of the functions, the input and output

variables, and how one function interacts with related modules.

Multiple API packages are required to effectively use the Java

language. The Java language specification directly relies on 60 classes

consisting of more than 750 public methods and fields spread across 3

packages. All of these packages have dependencies: the declarations of

those methods in turn rely on other classes in other packages. Because

27

of these dependencies, the exact number of “core” packages required to

use the Java language is higher than was stipulated. Notwithstanding

this stipulation, use of the unprotected Java language necessitates the

reuse of many interdependent API packages.

Reusing these API declarations is necessary to achieve

interoperability. This Court emphasized that interoperability

considerations bear on the second fair use factor particularly “with

respect to those core packages which it seems may be necessary for

anyone to copy if they are to write programs in the Java language. And,

it may be that others of the packages were similarly essential

components of any Java language-based program.” Oracle, 750 F.3d at

1377. Reimplementing the Java language requires reusing a number of

core and interrelated API packages.

The creativity involved in designing an API does not diminish its

utilitarian goal. Oracle and its amici stress the difficulty and creativity

involved in creating an API. But much of Oracle’s API design—like

most API designs—draws heavily on existing practice, facilitating the

interoperability in new software and hardware platforms.

28

IV. Android’s Incorporation of Java APIs Is Fair Use Because
It Is Transformative and Achieves Substantial
Interoperability.

Android is transformative because it brought the Java

programming language and APIs to a new context and platform. Under

the first fair use factor, which considers “the purpose and character of

the use,” 17 U.S.C. § 107(1), the degree to which a use is transformative

weighs heavily on the purpose and the character of that use. Campbell,

510 U.S. at 586. A use is transformative if it “adds something new, with

a further purpose or different character, altering the first with new

expression, meaning, or message.” Id.

Moreover, Android facilitates interoperability with the existing

Java platform, which encourages software reuse and innovation. That

software enables interoperability supports a finding of fair use. See

generally Edward Lee, Technological Fair Use, 83 S. Cal. L. Rev. 797

(2010) (arguing that courts should broadly apply fair use doctrine to

protect technological innovation).

A. Oracle’s Constrained Interpretation of
Transformative Use is Unworkable in Software.

This Court should reject Oracle’s cramped view of

transformativeness, as it would eliminate the possibility of

29

transformative use in software in all but non-functional uses. Oracle

and its amici repeatedly argue that Google’s reimplementation of Java

APIs is not transformative because the APIs serve the same purpose in

Android. Oracle relies extensively on non-software fair use cases to

argue that adapting one work for use in another for the same purpose is

not transformative. Plaintiff-Appellant Br. at 29-37. This overly

constrained interpretation of fair use ignores the fact that software’s

functional nature dictates its reuse.

This Court should take into account the unique aspects of

software when evaluating transformativeness. See Asay,

Transformative Use in Software, supra, at 15-17. That software reuse

must involve an element of functional replication should not preclude

transformativeness. Software is inherently functional. Unlike in other

creative works, APIs in isolation can only serve one functional purpose

because they are technical specifications with defined meanings. Thus,

an API reimplementation—a functional reuse—must necessarily inherit

functional characteristics of the original work. The analysis of whether

software is transformative should examine the extent to which the new

30

work, as a whole, transcends the original through new purpose and

context.

B. Android Reimplements Java APIs in a New Context
and Is Tailored for New Uses and Constraints.

Android’s use of Java APIs is transformative because Android

occupies an entirely new context: smartphones and tablets. Android

does not merely implement Java APIs on a new format or medium; it is

an entirely new operating system for mobile devices that selectively

incorporates and augments the Java API packages.9 Android

revolutionized the mobile software landscape. See Claudio Giachetti,

Competitive Dynamics in the Mobile Phone Industry 65-67 (2013).

Though Android incorporated Java APIs, software development for

Android is different from software development for server and desktop

environments. Android reflects these differences through its

implementing code, its own virtual machine,10 and Android-specific

APIs.

9 Oracle’s Java ME has little in common with Java SE. It runs a small
subset of the Java platform and is largely incompatible.
10 The virtual machine is a piece of software that allows Java programs
to run on certain hardware.

31

Technical and practical concerns set mobile and desktop

environments apart. First, smartphones use touchscreens, whereas

some Java APIs presuppose a mouse and keyboard user interface.

Instead of reimplementing these APIs, Android crafted new

touchscreen-specific APIs. Second, smartphones utilize various sensors,

including GPSs, accelerometers, cameras, compasses, and microphones.

The Java APIs did not adequately address these peripherals, which are

less central to the desktop setting. Third, smaller battery sizes mean

that smartphones are nearly always starved for electric power.

Relatedly, mobile phones run on a different type of computer processor

(ARM chips), which are more energy efficient. These significant

differences constrain API implementation and alter how mobile

developers interact with the platform. Though Android used the Java

language and reimplemented many essential Java APIs, Android

incorporated many new APIs to form a platform that transcended the

original.

Android is illustrative of how API reimplementation can

encourage development of compatible software in new and innovative

contexts. This is especially true as hardware and software platforms

32

evolve. See Asay, Copyright Software Anticommons, supra, at 314 (“For

instance, reuse of software technologies such as software interfaces or

objects in order to promote compatibility more generally will often

result in the use of these software technologies in completely new

contexts, such as enabling otherwise distinctive software services to

exchange data in an ever-expanding Internet of Things economy.”).

Restricting freely reimplementable APIs will limit innovation and

interoperability of future hardware and software platforms.

C. Android’s Use of Java APIs Enables Interoperability.

The character and purpose of Android’s use of the Java API is to

facilitate interoperability. Interoperability includes compatibility, both

between and within platforms. The reimplementation of Java’s API in

the Android platform achieves significant interoperability in two ways.

First, programmers familiar with Java can adapt their knowledge of

Java and its APIs to program smartphones. Second, hundreds of

millions of lines of existing Java software that use Java APIs can run on

both platforms. Contrary to what Oracle and its amici claim, most

software written for Oracle’s Java—besides certain use cases

inapplicable to mobile phones—runs without modification on Android.

33

See Figure 3 (listing libraries that interoperate with both Java and

Android platforms).

Library Name Description
Guava Core library
Apache Commons-math Math library
Bouncycastle Crypto library
Okio I/O library
Guice, Dagger Dependency injection frameworks
RxJava Concurrency framework
Timber Logging framework
Bugsnag Analytics and exception tracking

framework
Retrofit REST adapter
Jackson, Gson JSON parser
Nano Proto Protocol buffer parser
OkHttp, Apache
HttpClient

HTTP clients

Jetty HTTP server
Gradle, Maven Build systems
JUnit Unit testing framework

Figure 3: List of large and complex third party libraries that run equally
well on both Java and Android platforms.

Interoperability favors a finding of fair use. The reuse of APIs

enables software technologies to expand into new contexts and develop

new features. Android is not, as Oracle claims, simply a copy of Oracle’s

product. In fact, Oracle, and previously Sun Microsystems, had failed

where Android succeeded. Because Android was largely interoperable

from the outset, the platform was quickly adopted in the mobile

development community. In addition, Android was licensed more

34

permissively than Oracle’s Java platform. This gave third parties—

including carriers and other manufacturers—the freedom to develop

proprietary features on top of Android. Ryan Paul, Why Google Chose

the Apache Software License Over GPLv2 for Android, Ars Technica

(Nov. 6, 2007, 7:26 AM), https://arstechnica.com/

?post_type=post&p=79053.

Android represents an enormous contribution to the Java

community. The existence of the Android platform gave superpowers to

every Java developer: Java programmers could now apply their Java

skills to new contexts, including programming modern smartphones

and creating mobile applications. Android breathed new life into an

aging Java platform, and has been at the forefront of smartphone

innovation since its introduction in 2008. The functional

interoperability embedded in Android was integral to growth in creative

expression in the mobile application space.

D. Android’s Use of Java APIs Was Necessary to Achieve
Its Purpose.

The reimplementation of Java APIs in Android was necessary to

achieve its transformative purpose. Though the Java language and its

APIs are technically distinct, they cannot be separated as a practical

35

matter because the essential Java APIs have become a fixture of the

language itself. Android’s reimplementation of Java APIs was necessary

if it was to make use of the Java language in a meaningful way. It

would not have been reasonable, or even conceivable for Google to

provide different names and parameters for all the methods, classes,

and packages in the APIs. This would have violated common sense,

engineering best-practices, and decades of standard industry practice.

The Java APIs are in no way the “heart” of the Java platform.

When considering the substantiality of the Java platform used in

Android, the interface, together with the implementing code, should be

examined as a single work. See Asay, Copyright Software Anticommons,

supra, at 319-22. After all, an interface serves a functional purpose but

cannot operate without an implementation. See id. While the API

declarations are necessary to achieve interoperability, they constitute a

negligible portion of the code necessary to define and implement the

interfaces. Within the Android platform, the declarations comprise less

than a tenth of a percent of the code. By reusing a tiny portion of Java’s

platform for interoperability, Google was able to develop an innovative

and transformative platform.

36

CONCLUSION

For the aforementioned reasons, Google’s reimplementation of the

Java APIs was fair use, and this Court should affirm the judgment

below.

 /s/ Phillip R. Malone
Phillip R. Malone
Jef Pearlman
Juelsgaard Intellectual Property and

Innovation Clinic
Mills Legal Clinic at Stanford Law
School
559 Nathan Abbott Way
Stanford, CA 94305
Telephone: 650-725-6369
Fax: 650-723-4426

Attorneys for Amici Curiae

CERTIFICATE OF SERVICE

I certify that I served a copy on counsel of record on May 30, 2017

by Electronic Means (by CM/ECF).

 /s/ Phillip R. Malone
Phillip R. Malone
Juelsgaard Intellectual Property and

Innovation Clinic
Mills Legal Clinic at Stanford Law
School
559 Nathan Abbott Way
Stanford, CA 94305
Telephone: 650-725-6369
Fax: 650-723-4426
E-mail: pmalone@law.stanford.edu

Attorney for Amici Curiae

CERTIFICATE OF COMPLIANCE

This brief complies with the type-volume limitation of Federal

Rule of Appellate Procedure 32(a)(7)(B) or Federal Rule of Appellate

Procedure 28.1(e). The brief contains 6252 words, excluding the parts of

the brief exempted by Federal Rule of Appellate Procedure

32(a)(7)(B)(iii) and Federal Circuit Rule 32(b).

This brief complies with the typeface requirements of Federal

Rule of Appellate Procedure 32(a)(5)(A) and the type styles

requirements of Federal Rule of Appellate Procedure 32(a)(6). The brief

has been prepared in a proportionally spaced typeface using Microsoft

Word, in 14-point Century Schoolbook font.

 /s/ Phillip R. Malone
Phillip R. Malone
Juelsgaard Intellectual Property and

Innovation Clinic
Mills Legal Clinic at Stanford Law
School
559 Nathan Abbott Way
Stanford, CA 94305
Telephone: 650-725-6369
Fax: 650-723-4426

Attorney for Amici Curiae

A-1

APPENDIX—LIST OF AMICI CURIAE

(In alphabetical order)

Amici are signing this brief on their own individual behalf and not on
behalf of the companies or organizations with whom they are affiliated.
Those affiliations are only for identification. This includes those amici
indicated by an asterisk (*), who are presently Google employees,
consultants, and/or directors. Those amici are signing this brief as
individual computer scientists whose work in the field long preceded
their affiliation with Google. They are not signing this brief on behalf of
Google or at Google’s request.

1. Harold Abelson.* Dr. Harold “Hal” Abelson is a Professor of

Electrical Engineering and Computer Science at MIT, a fellow of the
IEEE, and a founding director of both Creative Commons and Public
Knowledge. He directed the first implementation of the Logo
computing language for the Apple II, which made the language
widely available on personal computers beginning in 1981, and
published a popular book on Logo in 1982. Abelson co-developed
MIT’s introductory computer science subject, which included
innovative advances in curricula designed for students pursuing
different kinds of computing expertise. These curricula had a
worldwide impact on university computer science education.
Notable awards include the Bose Award (MIT School of
Engineering, 1992), the Taylor L. Booth Education Award (IEEE-
CS, 1995), and the SIGCSE 2012 Outstanding Contribution to
Computer Science Education (ACM, 2012). Abelson holds an A.B.
from Princeton University and a Ph.D. in mathematics from MIT.

2. Tom Ball.* Tom Ball is a Staff Engineer at Google, working on Java-
based developer tools. He was previously a Distinguished Engineer
at Sun Microsystems, and a member of the JDK team that first
released Java publicly. He wrote the first Java debugger (jdb), was a
member of the AWT and Swing teams, and developed the Jackpot
automated refactoring tool designed by James Gosling. His current
project is J2ObjC (http://j2objc.org), an open source tool that
converts Java source to Objective-C for use by iOS applications
(which cannot run Java).

A-2

3. Brian Behlendorf. Brian Behlendorf is Executive Director of
Hyperledger, an open source blockchain technology collaborative
based at the Linux Foundation. He also serves as Chairman of the
Board of the Electronic Frontier Foundation, and a member of the
boards of the Mozilla Foundation and Benetech. He also co-founded
the Apache Software Foundation, has worked as CTO for the World
Economic Forum, advised and served the White House on open data
and open source software issues, and co-founded a string of
successful startups.

4. Gordon Bell. Gordon Bell is a Microsoft researcher emeritus, and
former Digital Vice President of R&D, where he led the development
of the first mini- and time-sharing computers. As NSFs founding
Director for Computing (CISE), he led the plan for NREN (Internet).
Bell has researched and written about computer architecture, high-
tech startup companies, and lifelogging. He is a member of the
American Academy of Arts and Sciences, the National Academy of
Engineering, National Academy of Science, and received The 1991
National Medal of Technology. He is a founding trustee of the
Computer History Museum, Mountain View, CA.

5. Jon Bentley. Jon Bentley’s research interests include programming
techniques, algorithm design, and the design of software tools and
interfaces. He has written three books on programming and over a
hundred articles on a variety of topics, ranging from the theory of
algorithms to software engineering. He received a B.S. from
Stanford in 1974 and an M.S. and Ph.D. from the University of
North Carolina in 1976, then taught Computer Science at Carnegie
Mellon for six years. He joined Bell Labs Research in 1982, where he
became a Distinguished Member of Technical Staff. He left Bell
Labs in 2001 to join Avaya Labs research, from which he retired in
2013. He has been a visiting faculty member at West Point and
Princeton, and has been a member of teams that have shipped
software tools, telephone switches, telephones and web services. He
holds over 40 US Patents. In March 2000 he received the Dr. Dobb’s
Excellence in Programming Award for advancing the craft of
computer programming.

A-3

6. Matthew Bishop. Matthew Bishop received his Ph.D. in computer
science from Purdue University, where he specialized in computer
security, in 1984. He is on the faculty at the Department of
Computer Science at the University of California at Davis. His main
research area is the analysis of vulnerabilities in computer systems,
including modeling, detecting, and analyzing them. Currently, he
has research projects involving data sanitization, modeling election
processes, and analyzing attacks. He is co-leading an education
project aimed at improving the practice of programming using a
“secure programming clinic” to help students improve the
robustness and security of their programs. He has been active in the
area of UNIX security since 1979, and has presented tutorials at
SANS, USENIX, and other conferences. He also has done work on
electronic voting, and was one of the two principle investigators of
the California Top-to-Bottom Review, which performed a technical
review of all electronic voting systems certified for use in the State
of California. His textbook, Computer Security: Art and Science
(Addison-Wesley, 2002), is used at many academic institutions
throughout the world.

7. Joshua Bloch. Joshua Bloch is an expert on API design, with over a
quarter century of experience. He is a Professor of Computer
Science at Carnegie Mellon University. Previously, he was Chief
Java Architect at Google, a Distinguished Engineer at Sun
Microsystems, and a Senior Systems Designer at Transarc
Corporation. He led the design and implementation of numerous
Java APIs and language features, including the award-winning
Java Collections Framework. He is the author of several books,
including the bestselling, Jolt Award-winning Effective Java
(Addison-Wesley, 2001; Second Edition, 2008), the de facto standard
guide to Java best practices. He served on the National Academies
CSTB Certifiably Dependable Software Committee. He holds a B.S.
from Columbia and a Ph.D. in Computer Science from Carnegie
Mellon University.

8. Dan Boneh. Dan Boneh is a Professor of Computer Science at
Stanford University, where he heads the applied cryptography
group. Dr. Boneh’s research focuses on applications of cryptography
to computer security. His work includes cryptosystems with novel

A-4

properties, security for mobile devices, web security, and
cryptanalysis. He is the author of over a hundred publications in the
field and is a recipient of the 2013 Gödel prize, the Packard Award,
the Alfred P. Sloan Award, the RSA award in mathematics and five
best paper awards. In 2011 Dr. Boneh received the Ishii award for
industry education innovation. Dr. Boneh’s wife is a current Google
employee.

9. Gilad Bracha.* Gilad Bracha is the creator of the Newspeak
programming language and a software engineer at Google. A well
known researcher in the area of object-oriented programming
languages, he was awarded the senior Dahl-Nygaard prize in 2017.
Previously, he was a VP at SAP Labs in Palo Alto, a Distinguished
Engineer at Cadence, and a Computational Theologist and
Distinguished Engineer at Sun. He has authored or co-authored
several books including the Java Language and Virtual Machine
Specifications, and the Dart Programming Language. Prior to
joining Sun, he worked on Strongtalk, the Animorphic Smalltalk
System. He received his B.Sc in Mathematics and Computer Science
from Ben Gurion University in Israel and a Ph.D. in Computer
Science from the University of Utah..

10. Eric Brewer.* Eric Brewer pioneered early “cloud” computing
starting in the 1990s with research on large-scale services
implemented on clusters of commodity servers, for which he was
elected to the National Academy of Engineering. In 1996, Brewer co-
founded Inktomi Corporation, an early search engine that also
influenced the modern Internet architecture. He formulated the
CAP theorem, one the tenets of modern distributed systems. In
2000, working with President Clinton, he led the development of
usa.gov, the primary federal portal. He is a tenured professor in the
Computer Science department at UC Berkeley, but is currently on
leave at Google as VP, Infrastructure. Brewer received a BS in
EECS from UC Berkeley, and an M.S. and Ph.D. from MIT.

11. Frederick Brooks. Brooks is the Kenan Professor of Computer
Science (Emeritus) at University of Northern Carolina at Chapel
Hill. As Corporate Project Manager for IBM’s System/360
(mainframe) computer family hardware and the Operating

A-5

System/360 software, he in 1964 switched the standard computer
byte size from 6 to 8 bits. He was an architect of the Stretch and
Harvest supercomputers. He founded UNC’s Computer Science
Department. He’s researched computer architecture, software
engineering, the design process, and graphics virtual environments.
He wrote The Mythical Man-Month, The Design of Design, and with
G.A. Blaauw, Computer Architecture. Honors include the National
Medal of Technology, the ACM Turing award, the National
Academies of Engineering and Science, and British and Dutch
academies.

12. Rick Cattell. R. G. G. “Rick” Cattell is an independent consultant in
database systems. He previously worked as a Distinguished
Engineer at Sun Microsystems. Dr. Cattell served for 20 years at
Sun Microsystems in management and senior technical roles, and
for 10 years in research at Xerox PARC and Carnegie Mellon
University. He is best known for his contributions in database
systems and middleware, including database scalability, Enterprise
Java, object/relational mapping, object-oriented databases, and
database interfaces. At Sun he instigated Enterprise Java, JDBC,
Java DB, and Java Blend, and contributed to many Java APIs and
products. He previously developed Xerox PARC’s Cedar DBMS,
Sun’s Simplify database GUI, and SunSoft’s CORBA-database
integration. He is a co-founder of SQL Access (predecessor to
ODBC), founder and chair of the Object Data Management Group
(ODMG), author of the world’s first monograph on object/relational
and object databases, recipient of the ACM Outstanding Ph.D.
Dissertation Award, and an ACM Fellow.

13. Vinton G. Cerf.* Vinton G. “Vint” Cerf is vice president and Chief
Internet Evangelist for Google, where he contributes to global policy
development and the continued spread of the Internet. Widely
known as one of the “Fathers of the Internet,” Cerf is the co-
designer of the TCP/IP protocols and the architecture of the
Internet. He has served in executive positions at MCI, the
Corporation for National Research Initiatives, the Defense
Advanced Research Projects Agency, and on the faculty of Stanford
University. Cerf served as chairman of the board of the Internet
Corporation for Assigned Names and Numbers (ICANN) from 2000-

A-6

2007. Cerf is a Fellow of the IEEE, ACM, and AAAS, the American
Academy of Arts and Sciences, the International Engineering
Consortium, the Computer History Museum, and is a member of the
National Academy of Engineering. He is a former President of the
ACM and Founding President of the Internet Society. President
Obama appointed him to the National Science Board in 2012. Cerf is
a recipient of numerous awards and commendations in connection
with his work on the Internet, including the US Presidential Medal
of Freedom, US National Medal of Technology, the Queen Elizabeth
Prize for Engineering, the ACM Turing Award, Officer of the Legion
d’Honneur and 29 honorary degrees. In December 1994, People
magazine identified Cerf as one of that year’s “25 Most Intriguing
People.” Cerf holds a B.S. from Stanford, and an M.S. and Ph.D.
from UCLA.

14. William Cook. William Cook is an Associate Professor in the
Department of Computer Sciences at the University of Texas at
Austin. His research is focused on object-oriented programming,
programming languages, modeling languages, and the interface
between programming languages and databases. Prior to joining UT
in 2003, Dr. Cook was Chief Technology Officer and co-founder of
Allegis Corporation. He was chief architect for several award-
winning products, including the eBusiness Suite at Allegis, the
Writer’s Solution for Prentice Hall, and the AppleScript language at
Apple Computer. At HP Labs his research focused on the
foundations of object-oriented languages, including formal models of
mixins, inheritance, and typed models of object-oriented languages.
He completed his Ph.D. in Computer Science at Brown University in
1989. He received the Dahl-Nygaard Senior Prize in 2014 for his
contributions to the theory and practice of object-oriented
programming.

15. Mark Davis.* Dr. Mark Davis has been the Chief
Internationalization Architect at Google since 2006, focusing on
effective and secure use of Unicode, software internationalization
libraries, and related areas. Dr. Davis is also the co-founder and has
been president of the Unicode Consortium since its inception in
1991, and is a key technical contributor to the Unicode
specifications. In 2003, he founded the Unicode Common Locale

A-7

Data Repository (CLDR) project, the standard repository for locale
data worldwide. He is co-author of BCP 47 (“Tags for Identifying
Languages”), used to identify human languages in all XML and
HTML documents, and in all modern programming libraries. Mark
provided the original architecture of ICU, the premier Unicode
software internationalization library, and the Java
internationalization libraries. At IBM, he was Chief Software
Globalization Architect. At Taligent, he was manager and architect
for the international frameworks. At Apple, he co-authored the first
Macintosh system to support Japanese (KanjiTalk), and authored
the first Macintosh Arabic and Hebrew systems. Mark holds a Ph.D.
from Stanford University and a B.A. from the University of
California, Irvine.

16. Miguel de Icaza. Miguel de Icaza is currently a Distinguished
Engineer at Microsoft and was an early contributor to Linux
projects. In 1997, he cofounded the GNOME project, with the goal to
create a completely free desktop environment. In 2001, he co-
founded and directed the Mono Project, with the goal to
reimplement Microsoft’s .NET development platform on Linux. He
has started two companies: Ximian in 1999, which focused on the
Linux desktop and was sold to Novell in 2003; and Xamarin which
was founded in 2011 to build mobile development tools and was sold
to Microsoft in 2016. He has received numerous awards and
recognitions including: the Free Software Foundation Free Software
Award, the MIT Technology Review Innovator of the Year Award,
and was named one of Time Magazine’s 100 innovators for the new
century.

17. Jeffrey Dean.* Jeffrey Dean joined Google in 1999 and is currently
one of two Senior Fellows in the company, where he leads the
Google Brain team, Google’s artificial intelligence research team. He
has co-designed/implemented five generations of Google’s crawling,
indexing, and query serving systems, and co-designed/implemented
major pieces of Google’s initial advertising and AdSense for Content
systems. He is also a co-designer and co-implementor of Google’s
distributed computing infrastructure, including the MapReduce,
BigTable and Spanner systems, protocol buffers, LevelDB, systems
infrastructure for statistical machine translation, the TensorFlow

A-8

open-source machine learning system, and a variety of internal and
external libraries and developer tools. Prior to joining Google, Jeff
did computer systems research at Digital Equipment Corporation’s
Western Research Lab. Jeff has also worked for both the Centers for
Disease Control and the World Health Organization, designing
computer software for epidemiology and for statistical analysis of
the HIV/AIDS pandemic. He is a Fellow of the ACM and the AAAS,
a member of the U.S. National Academy of Engineering, and a
recipient of the Mark Weiser Award and the ACM-Infosys
Foundation Award in the Computing Sciences. Jeff holds a B.S.,
summa cum laude, in computer science and economics from the
University of Minnesota, and a M.S. and Ph.D. in computer science
from the University of Washington.

18. L Peter Deutsch. Dr. L Peter Deutsch received a Ph.D. in Computer
Science from U.C. Berkeley in 1973. Subsequently at Xerox PARC,
he helped develop the Interlisp-D, Cedar Mesa, and Smalltalk-80
programming systems. Deutsch’s work on Smalltalk
implementation, among other innovations, was an important
contributor to the just-in-time compilation technology now used
widely to dramatically improve the performance of Java and
JavaScript implementations. He is also the author of a number of
RFCs and of The Eight Fallacies of Distributed Computing, and
originated the Deutsch limit adage about visual programming
languages. From 1986 to 1991, as Chief Scientist at ParcPlace
Systems, he developed cross-platform JIT technology. From 1986 to
2003, dba Aladdin Enterprises, he was the creator of Ghostscript, an
Open Source implementation of the PostScript language. In 1993, he
was a co-recipient of the ACM Software System Award, and was
also named a Distinguished Alumnus of the U.C. Berkeley
Computer Science program; he was named an ACM Fellow in 1994.
In 1994, he founded Artifex Software to license Ghostscript
commercially while continuing its development and its release as
Open Source; Artifex today is a multi-million-dollar business. In
1999-2000, he served on the board of the Open Source Initiative. He
is a co-inventor on two patents.

19. Whitfield Diffie. Dr. Whitfield Diffie serves as advisor to a variety of
startups, primarily in the field of security. He is best known for

A-9

discovering the concept of public key cryptography, which underlies
the security of internet commerce and all modern secure
communication systems. Diffie’s two principal positions after
leaving Stanford University in the late 1970s were Manager of
Secure Systems Research for Bell-Northern Research, the
laboratory of the Canadian telephone system, and Chief Security
Officer at Sun Microsystem. Diffie received the 2015 Turing Award
and in 2017 was elected to both the National Academy of
Engineering and the Royal Society.

20. David L. Dill. David Dill is The Donald E. Knuth Professor in the
School of Engineering at Stanford University. Professor Dill’s Ph.D.
thesis, “Trace Theory for Automatic Hierarchical Verification of
Speed Independent Circuits” was named as a Distinguished
Dissertation by the Association for Computing Machinery (ACM),
and published as such by M.I.T. Press in 1988. He was named a
Fellow of the Institute of Electrical and Electronics Engineers
(IEEE) in 2001 for his contributions to verification of circuits and
systems, and a Fellow of the ACM in 2005 for contributions to
system verification and for leadership in the development of
verifiable voting systems. In 2008, he received the first “Computer-
Aided Verification” award for fundamental contributions to the
theory of real-time systems verification. In 2013, he was elected to
the National Academy of Engineering and the American Academy of
Arts and Sciences. In 2016, he received the Alonzo Church Award
for Outstanding Contributions to Logic and Computation.

21. Lester Earnest. Lester Earnest is a widely-recognized computer
scientist, best known for his deep involvement with the Advanced
Research Project Agency Network (ARPAnet) startup committee,
which led to his invention of the Finger social networking protocol.
He served as a US Navy Aviation Electronics Officer and Digital
Computer Project Officer at the Naval Air Development Center, and
later joined MIT to help design the Semi-Automatic Ground
Environment air defense system. Later, he innovated numerous
early features in the nascent field of word processing, including the
first spell-checker, search engine, self-driving vehicle, robotic hand-
eye assembler that took verbal instructions, online restaurant

A-10

reviews, online news service, and a number of other successful
innovations.

22. Brendan Eich. Brendan is the former CTO of Mozilla, and is widely
recognized for his enduring contributions to the Internet revolution.
In 1995, Eich invented JavaScript (ECMAScript), the Internet’s
most widely used programming language. He co-founded the
mozilla.org project in 1998, serving as chief architect, and was a
board member of the Mozilla Foundation since its inception in 2003
through 2014. Brendan helped launch the award-winning Firefox
Web browser in November 2004 and Thunderbird e-mail client in
December 2004.

23. Dawson Engler. Dawson Engler is an Associate Professor at
Stanford. He received his Ph.D. from MIT for his work on the
exokernel operating system and his undergraduate degree from
University of Arizona. His research focuses on devising automatic
methods to find as many interesting bugs in real code as possible,
including static analysis, implementation level model checking, and
symbolic execution. His research group has won numerous “Best
Paper” awards. Its early static tools have found millions of errors in
mature open source and commercial systems and have formed the
basis of a successful company, Coverity. His group’s more recent
tool, KLEE, is a symbolic execution system widely used in the
research community. He won the 2006 Weiser award and the 2008
ACM Grace M Hopper award.

24. Martin Fowler. Martin Fowler is an author and educator on
software development. He is currently chief scientist at
ThoughtWorks, a global system delivery and consulting firm. Mr.
Fowler concentrates on the design of enterprise software: what
makes a good design and what practices are needed to enhance it.
He is the author of seven books on software development, which
have over a million copies in print in over a dozen languages. He is
the editor of a book series with Addison-Wesley on software design.
His website, http://martinfowler.com, is a wide-ranging resource of
software development techniques attracting around 150,000 visitors
per month.

A-11

25. Neal Gafter. Neal Gafter is a Principal Engineer at Microsoft, where
he is a technical lead for the Roslyn Project (Microsoft’s
implementation for the C# and Visual Basic programming
languages). Previously he was a software engineer and Java
Evangelist at Google, where he designed and implemented the
distributed storage architecture for Google Calendar, and a Senior
Staff Engineer at Sun Microsystems, where he led the development
of the Java compiler and implemented the Java language features
in releases 1.4 through 5.0. Neal was a member of the C++
Standards Committee and led the development of C and C++
compilers at Sun Microsystems, Microtec Research, and Texas
Instruments. He holds a B.S. in computer engineering from Case
Western Reserve University and a Ph.D. in computer science from
the University of Rochester.

26. Robert Harper. Robert Harper is a professor in the computer science
department at Carnegie Mellon University. He holds a Ph.D. in
computer science from Cornell University. His main research
interest is in the application of type theory to the design and
implementation of programming languages and to the
mechanization of their meta-theory. Harper made major
contributions to the design of the Standard ML programming
language and the LF logical framework. Harper is a recipient of the
Allen Newell Medal for Research Excellence and the Herbert A.
Simon Award for Teaching Excellence, and is an Association for
Computing Machinery Fellow.

27. John Hennessy.* John Hennessy is a Professor of Electrical
Engineering and Computer Science and Director of the Knight-
Hennessy Scholars Program at Stanford University. Professor
Hennessy previously served as President of Stanford University for
sixteen years until 2016. He serves on the boards of Google, Cisco
Systems, and the Gordon and Betty Moore Foundation. Professor
Hennessy is an IEEE Fellow, a member of the National Academy of
Sciences and the National Academy of Engineering, and a Fellow of
the American Academy of Arts and Sciences and the Association for
Computing Machinery. He is the co-author of two internationally
used undergraduate and graduate textbooks on computer
architecture design.

A-12

28. Tom Jennings. Tom Jennings has specialized in computers,
software, and electronics since 1977; computer networking since
1984; and the Internet since 1992. Jennings was on the team that
wrote the interface specification (API in today’s parlance) for
Phoenix Software’s IBM compatible ROM BIOS. Jennings is the
creator of FidoNet, the first and most influential message and file
networking system protocol for networking computer bulletin
boards. Jennings built Wired magazine’s first internet presence as
its first webmaster and ran an early regional internet service
provider, TLGnet. Currently, Jennings is on the faculty at Calarts
Art+Technology program.

29. Alan Kay. Alan Kay is one of the pioneers of object-oriented
programming, personal computing, and graphical user interfaces.
For this work, Dr. Kay has received the Draper Prize from the
National Academy of Engineering, the ACM Turing Award, and the
Kyoto Prize from the Inamori Foundation. Alan has been elected a
fellow of the American Academy of Arts and Sciences, the National
Academy of Engineering, the Royal Society of Arts, the AAAS, and
the Computer History Museum. Alan has held fellow positions at
HP, Disney, Apple, and Xerox, and has served as the chief scientist
at Atari. While at Xerox PARC, he was one of the key members
there to develop prototypes of networked workstations using the
programming language Smalltalk. He is an adjunct professor of
computer science at UCLA and an advisor to One Laptop per Child.
At Viewpoints Research, Alan also continues his work with
“powerful ideas education” for the world’s children, as well as the
development of advanced personal computers and networking
systems.

30. Brian Kernighan.* Brian Kernighan is a professor in the Computer
Science Department of Princeton University. He worked at Bell
Labs alongside Unix creators Ken Thompson and Dennis Ritchie
and contributed to the development of Unix. He co-authored a
number of Unix programs, including widely used document
preparation tools. He is also the author or co-author of 11 books on
computing, including the first book on the C programming language
with Dennis Ritchie; these books have been translated into more
than two dozen languages. He is also a co-creator of the AWK and

A-13

AMPL programming languages. In collaboration with Shen Lin he
devised well-known heuristics for two fundamental NP-complete
optimization problems: graph partitioning and the traveling
salesman problem. Kernighan received a Bachelor’s degree in
engineering physics from the University of Toronto, and his Ph.D. in
electrical engineering from Princeton University. He is a member of
the National Academy of Engineering.

31. David Klausner. David Klausner has over 50 years of
software/hardware development and consulting experience in the
computer and software industry. He has written software for
commercial products as an engineer, developer, supervisor, project
manager, department manager, middle manager and company
executive. He has worked in forensic investigation and in reverse
engineering. He has been employed in various capacities for various
companies, such as Microsoft, AT&T, Cisco, IBM, Hewlett Packard,
and Intel Corporation. He holds a Bachelors of Arts degree in
Mathematics, and a Master of Science degree in Electrical
Engineering. He has taught programming, public speaking, has
guest lectured at Stanford University, and been an invited speaker
by IBM, AT&T, and others. His technical opinions have been
confirmed in several cases by the United States Court of Appeals for
the Federal Circuit.

32. Ray Kurzweil.* Ray Kurzweil is an inventor, author and futurist.
He was the principal inventor of the first CCD flat-bed scanner, the
first omni-font optical character recognition, the first print-to-speech
reading machine for the blind, the first text-to-speech synthesizer,
the first music synthesizer capable of recreating the grand piano
and other orchestral instruments, and the first commercially
marketed large-vocabulary speech recognition. Kurzweil is the
recipient of the National Medal of Technology, was inducted into the
National Inventors Hall of Fame, holds twenty honorary Doctorates,
and has received honors from three U.S. Presidents. He is presently
a Director of Engineering at Google heading up a team developing
machine intelligence and natural language understanding.

33. Kin Lane. Kin is a computer scientist and API Evangelist working
to understand the technology, business and politics of APIs and help

A-14

share this insight with the world. He is the author of the book,
Business of APIs, and is behind the popular API Evangelist blog. He
has over 20 years of experience as a programmer, database
administrator, architect, product developer, manager, and executive
in the API space.

34. Ed Lazowska. Ed Lazowska holds the Bill & Melinda Gates Chair in
the Paul G. School of Computer Science & Engineering at the
University of Washington. His research concerns the design,
implementation, and analysis of high performance computing and
communication systems, and, more recently, the techniques and
technologies of data-intensive discovery. He co-chaired (with Marc
Benioff) the President’s Information Technology Advisory
Committee from 2003-05, and (with David E. Shaw) the Working
Group of the President’s Council of Advisors on Science and
Technology to review the Federal Networking and Information
Technology Research and Development Program in 2010. He is a
Member of the National Academy of Engineering and a Fellow of
the American Academy of Arts and Sciences.

35. Doug Lea. Doug Lea is a Professor of Computer Science at the State
University of New York at Oswego. He is an author of books,
articles, reports, and standardization efforts on object oriented
software development including those on specification, design and
implementation techniques, distributed, concurrent, and parallel
object systems, and software reusability; he has served as chair,
organizer, or program committee member for many conferences and
workshops in these areas. He is the primary author of several
widely used software packages and components.

36. Bob Lee. Bob Lee is CEO of Present Company, makers of Present,
an upcoming social network for women. Prior to that, as Square’s
CTO, Bob built Square’s core products, scaled the team from 12 to
1200 people, and created Square Cash. Before Square, Bob worked
at Google where he created Guice and was the core library lead for
Android.

37. Sheng Liang. Sheng Liang is a software entrepreneur. He is co-
founder and CEO of Rancher Labs, an enterprise software company.

A-15

He was CTO of the Cloud Platform group at Citrix Systems after
their acquisition of Cloud.com, where he was co-founder and CEO.
Sheng was co-founder and CTO of Teros, a provider of perimeter
and network security solutions for enterprises and service providers,
acquired by Citrix Systems in 2005. He also served as VP of
Engineering at SEVEN Networks, and Director of Software
Engineering at Openwave Systems. He was a Staff Engineer in Java
Software at Sun Microsystems, where he designed the Java Native
Interface (JNI) and led the Java Virtual Machine (JVM)
development for the Java 2 platform. He has a B.S. from the
University of Science and Technology of China and a Ph.D. from
Yale University.

38. Barbara Liskov. Barbara Liskov is one of the world’s leading
authorities on computer language and system design. Liskov joined
MIT in 1972 as a member of the Department of Electrical
Engineering and computer Science. She is also a member of the MIT
laboratory for Computer Science and Artificial Intelligence and
heads the programming methodology group. Her research interests
lie in programming methodology, programming languages and
systems, and distributed computing. Major projects include: the
design and implementation of CLU, the first programming language
to support data abstraction; the design and implementation of
Argus, the first high-level language to support implementation of
distributed programs; and the Thor object-oriented database
system, which provides transactional access to persistent, highly-
available objects in wide-scale distributed environments. Liskov is a
fellow of the American Academy of Arts and Sciences, the National
Academy of Inventors, the Association for Computing Machinery,
and the Massachusetts Academy of Science. She is a member of the
National Academy of Science and the National Academy of
Engineering. In 2009, she received the A.M. Turing Award from the
ACM. Other honors include the Society of Women Engineers’
Achievement Award, the IEEE von Neumann medal, the ACM
SIGPLAN Programming Languages Achievement Award, the
University of Pennsylvania Harold Pender Award, the ACM
SIGOPS Hall of Fame Award, the CMU and Tokyo University of
Technology Katayanagi Award for Research Excellence, the ACM

A-16

SIGOPS Lifetime Achievement Award, and five honorary
doctorates. She holds a B.A. from UC Berkeley and a Ph.D. from
Stanford.

39. Paul Menchini. Paul Menchini is the Chief Information Security
Officer at the North Carolina School of Science and Mathematics.
Previously, he held technical positions at HP, Intel, GE
Microelectronics, CLSI and OrCAD. As a member of the “Woods
Hole Summer Study on Hardware Description Languages,” he
contributed to the specifications for VHDL; subsequently, he edited
two revisions of IEEE Std 1076 VHDL and developed the first
commercially successful VHDL compiler. As part of the compiler
project, he developed an API for a VHDL intermediate form, which
was subsequently standardized by the IEEE. He holds a Masters in
Computer Engineering from Stanford University and is the
recipient of numerous technical awards, including charter
membership in the “IEEE Golden Core.”

40. Andrew W. Moore. Andrew Moore is the Dean of the School of
Computer Science at Carnegie Mellon University. His research
interests are data mining, machine learning, artificial intelligence,
algorithms, and theory. Previously, he was a VP of Engineering at
Google, co-director of the Biomedical Security Center at the
University of Pittsburgh, and co-founded a consultancy for
statistical data mining in manufacturing. Moore is a Fellow of the
Association for the Advancement of Artificial Intelligence (AAAI).
He holds a Ph.D. in Computer Science and a B.S. in Mathematics
and Computer Science from Cambridge University.

41. James H. Morris. Dr. James H. Morris is a Professor of Computer
Science at Carnegie Mellon University, where he served as Dean of
the Silicon Valley Campus, Dean of the School of Computer Science,
Head of the Computer Science Department, and Director of the
Information Technology Center, a joint project with IBM that
developed a prototype university computing system. He founded
Carnegie Mellon’s Human Computer Interaction Institute, Robot
Hall of Fame, and Silicon Valley Campus. He was an Associate
Professor at UC Berkeley, where he developed two fundamental
principles of programming languages: inter-module protection and

A-17

lazy evaluation. He was co-discoverer of the Knuth-Morris-Pratt
string-searching algorithm. He was Principal Scientist and
Research Fellow at Xerox PARC, where he was part of the team that
developed the Alto, a precursor to today’s personal computers. He is
a founder of MAYA Design Group and an ACM Fellow. He holds a
B.S. from CMU and an M.S. and Ph.D. from MIT.

42. Peter Norvig.* Peter Norvig is a Director of Research at Google;
previously he directed Google’s core search algorithms group. He is
co-author of Artificial Intelligence: A Modern Approach, the leading
textbook in the field, and co-teacher of an Artificial Intelligence
class that signed up 160,000 students, helping to kick off the current
round of massive open online classes (MOOCs). He is a fellow of the
AAAI, ACM, California Academy of Science and American Academy
of Arts and Sciences.

43. Martin Odersky. Martin is a professor at EPFL in Lausanne,
Switzerland. He is best known as the creator and principal designer
of the Scala programming language. Prior to that, he made several
contributions to the development of Java. He created the Pizza and
GJ languages, designed the original version of generics for Java,
and wrote the javac reference compiler for Java. He is a fellow of the
ACM.

44. Tim Paterson. Tim began his career designing one of the first 16-bit
microcomputer systems at Seattle Computer Products. He then
wrote an operating system for that computer, which was later sold
to Microsoft and became widely used as MS-DOS. He went on to
found his own company, Falcon Technology, whose primary products
were hard disk systems for personal computers. He moved on to
Microsoft where he was a software engineer for many years,
working on such products as QuickBASIC, Visual Basic, VBScript,
and Visual J++ (Java). After his retirement in the late ‘90s he has
continued developing software and microcontroller-based hardware
projects as a hobby and part-time small business. He has been
granted three U.S. patents on software methods.

45. David Patterson.* David Patterson joined UC Berkeley in 1977. He
has been Director of the Par Lab, Chair of UC Berkeley’s CS

A-18

Division, Chair of the Computing Research Association, and
President of the Association for Computing Machinery. His most
successful projects have been Reduced Instruction Set Computers
(RISC), Redundant Arrays of Inexpensive Disks (RAID), and
Network of Workstations. All helped lead to multibillion-dollar
industries. This research led to many papers, six books, and about
35 honors, including election to the National Academy of
Engineering, the National Academy of Sciences, the Silicon Valley
Engineering Hall of Fame, and Fellow of the Computer History
Museum. He shared the IEEE von Neumann Medal and the NEC
C&C Prize with John Hennessy, former President of Stanford
University and co-author of two of his books.

46. Alex Payne. Alex Payne consults, advises, and invests in early-stage
technology startups. As Platform Lead at Twitter he managed one of
the web’s most popular APIs. He was subsequently co-founder and
Chief Technology Officer of online banking service Simple, acquired
by BBVA in 2014. Alex organizes an annual conference showcasing
advances in programming languages and has co-authored a book on
the Scala programming language (O’Reilly, 2009). He is a regular
speaker at technology and business conferences worldwide and has
lectured on API design at Stanford.

47. Tim Peierls. Since receiving a BS in Computer Science from Yale in
1983 and an MS in CS from Cornell in 1986, Tim has continuously
worked in the software industry, first at Bell Labs (airline crew
scheduling), then co-founding the Lightstone Group in 1990 (aircraft
scheduling, delivery vehicle routing and scheduling, sold to
Descartes Systems Group in 1998) and Seat Yourself in 2002 (online
ticketing for school performing arts groups). For the last fifteen
years, almost all of his programming work has been in Java. He has
served on the Expert Groups of several Java Specification Requests
(166, 201, 330, 334) and on the SE/EE Executive Committee of the
Java Community Process; he co-authored a book, Java Concurrency
in Practice; and he contributes code, support, and advice to various
open source projects, including Restlet, Hazelcast, and JClouds.

48. Simon Phipps. Simon is a director and past-president of the Open
Source Initiative, the global steward of the Open Source Definition.

A-19

OSI serves to advocate for, educate about, and build bridges within
the open source community. His career has included early
engagement in establishing Java, XML and weblogs as computer
industry technologies as well as contributions to open standards in a
variety of fields. As chief open source officer at Sun Microsystems he
supervised the open source relicensing of Solaris Unix, Java and
many other software systems. He is currently founder and CEO of
Meshed Insights Ltd, a UK firm offering management services
related to open source and digital rights.

49. Bill Pugh. Bill Pugh invented Skip Lists, a randomized data
structure that is widely taught in undergraduate data structure
courses. He has also made research contributions in techniques for
analyzing and transforming scientific codes for execution on
supercomputers, and in a number of issues related to the Java
programming language, including the development of JSR 133—
Java Memory Model and Thread Specification Revision. Current
research projects include FindBugs, a widely used static analysis
tool for Java, and Marmoset, an innovative framework for
improving the learning and feedback cycle for student programming
projects. He is currently a professor emeritus of computer science at
the University of Maryland.

50. Ronald L. Rivest. Ronald L. Rivest is an MIT Institute Professor in
the Electrical Engineering and Computer Science Department. He is
well-known as a co-inventor of the RSA public-key cryptosystem, for
which he received the ACM Turing Award. He is a co-author of the
widely-used textbook Introduction to Algorithms. His current
research interest is voting systems and election integrity.

51. Curtis Schroeder. Curtis is a Hardware-in-the-Loop Simulation
Engineer at Draper. He served as the Drafting Group Editor for the
Simulation Interoperability Standards Organization (SISO)
Common Image Generator Interface (CIGI) 4.0 international
standard. The success of SISO international standards depends
upon implementation of said copyrighted standards by numerous
simulation vendors and end-users, including NATO. Previously,
Curtis has worked for Antycip Simulation in the UK and the
Lockheed Martin Aeronautics Company, where he utilized a number

A-20

of open standards in projects he was involved in. He earned B.S. &
M.S. Computer Science degrees at the Missouri University of
Science & Technology.

52. Robert Sedgewick. Robert Sedgewick is the founding chair and the
William O. Baker Professor in the Department of Computer Science
at Princeton and served for many years as a member of the board of
directors of Adobe Systems. He has over 50 years of experience
working with software systems. He has held visiting research
positions at Xerox PARC, Palo Alto, CA; Institute for Defense
Analyses, Princeton, NJ; and INRIA, Rocquencourt, France. He
regularly serves on journal editorial boards and organizing program
committees of conferences and workshops on data structures and
the analysis of algorithms held throughout the world. Professor
Sedgewick’s research interests include analytic combinatorics,
algorithm design, the scientific analysis of algorithms, curriculum
development, and innovations in the dissemination of knowledge.
He has published widely in these areas and is the author of twenty
books, including a series of books on algorithms that have been
bestsellers for four decades and have sold nearly one million copies.
He has also published extensive online content (including studio-
produced video lectures) on analysis of algorithms and analytic
combinatorics and (with Kevin Wayne) algorithms and computer
science. Their MOOC on algorithms has been named one of the “top
10 MOOCs of all time.”

53. Mary Shaw. Mary Shaw is the Alan J. Perlis University Professor of
Computer Science in the Institute for Software Research at
Carnegie Mellon University. Her research focuses on software
engineering and software design, particularly software architecture
and design of systems used by real people. She has made
fundamental and significant contributions to an engineering
discipline for software through developing data abstraction with
verification, establishing software architecture as a major branch of
software engineering, designing influential and innovative curricula
in software engineering and computer science supported by two
influential textbooks, and helping to found the Software
Engineering Institute at Carnegie Mellon. She has received the
United States’ National Medal of Technology and Innovation, the

A-21

George R. Stibitz Computer & Communications Pioneer Award, the
ACM SIGSOFT Outstanding Research Award, the IEEE Computer
Society TCSE’s Distinguished Educator and Distinguished Women
in Software Engineering Awards, and CSEE&T’s Nancy Mead
Award for Excellence in Software Engineering Education. She is an
elected Life Fellow of the ACM and the IEEE and an elected Fellow
of the AAAS. She holds a BA cum laude from Rice and a Ph.D. from
Carnegie Mellon.

54. Barbara Simons. Barbara Simons is a former President of the
Association for Computing Machinery (ACM), the nation’s oldest
and largest educational and scientific society for computing
professionals. She is the only woman to have received the
Distinguished Engineering Alumni Award from the College of
Engineering of U.C. Berkeley, where she earned her Ph.D. in
computer science. A fellow of ACM and the American Association for
the Advancement of Science, she also received the Computing
Research Association Distinguished Service Award and the
Electronic Frontier Foundation Pioneer Award. She has published
Broken Ballots: Will Your Vote Count?, a book on voting machines
co-authored with Douglas Jones. She has been on the Board of
Advisors of the U.S. Election Assistance Commission since 2008,
and she co-authored the report that led to the cancellation of
Department of Defense’s Internet voting project (SERVE) in 2004
because of security concerns. She was a member of the National
Workshop on Internet Voting, convened by President Clinton, which
conducted one of the first studies of Internet Voting and produced a
report in 2001. She is Board Chair of Verified Voting and is retired
from IBM Research.

55. Dave Snigier. Dave Snigier is an enterprise architect at the
University of Massachusetts President’s Office, designing systems to
help keep public higher education cost effective. He has led several
successful projects as part of the Emerging Technologies group at
UMass including a system-wide paperless initiative.

56. Alfred Z. Spector. Alfred Spector is Chief Technology Officer and
Head of Engineering at Two Sigma, a firm dedicated to using
information to optimize diverse economic challenges. Prior to joining

A-22

Two Sigma, Dr. Spector spent nearly eight years as Vice President
of Research and Special Initiatives, at Google, where his teams
delivered a range of successful technologies including machine
learning, speech recognition, and translation. Prior to Google, Dr.
Spector held various senior-level positions at IBM, including Vice
President of Strategy and Technology (or CTO) for IBM Software
and Vice President of Services and Software research across the
company. He previously founded and served as CEO of Transarc
Corporation, a pioneer in distributed transaction processing and
wide-area file systems, and he was a professor of computer science
at Carnegie Mellon University. Dr. Spector received a bachelor’s
degree in Applied Mathematics from Harvard University and a
Ph.D. in computer science from Stanford University. He is a Fellow
of both the Association for Computing Machinery and the IEEE. He
is an active member of the National Academy of Engineering and
the American Academy of Arts and Sciences, where he serves on the
Council. Dr. Spector won the IEEE Kanai Award for Distributed
Computing in 2001 and the ACM Software Systems Award for his
work on the Andrew File System (AFS) in 2016.

57. Bjarne Stroustrup. Bjarne Stroustrup is the inventor of the C++
programming language. He wrote the standard textbook on the
language and its implementation, The C++ Programming Language,
and many other academic and popular books and articles. He has
served on the ISO Standards committee since its creation in 1989.
He is a fellow of the ACM, the IEEE and the CHM, and an elected
member of the National Academy of Engineering. He holds a
masters degree in mathematics and computer science from Aarhus
University, in Denmark, and a Ph.D. in computer science from the
University of Cambridge, where he is an honorary fellow of
Churchill College.

58. Gerald Jay Sussman. Gerald Jay Sussman is the Panasonic
(formerly Matsushita) Professor of Electrical Engineering at the
Massachusetts Institute of Technology. He has been involved in
artificial intelligence research at M.I.T. since 1964. His research has
centered on understanding the problem-solving strategies used by
scientists and engineers, with the goals of automating parts of the
process and formalizing it to provide more effective methods of

A-23

science and engineering education. Sussman has also worked in
computer languages, in computer architecture, and in VLSI design.
Sussman is a coauthor of the introductory computer science
textbook that included innovative advances in curricula designed for
students pursuing different kinds of computing expertise, which has
had a worldwide impact on university computer-science education.
Sussman has received numerous awards and recognitions including:
the ACM’s Karl Karlstrom Outstanding Educator Award, the Amar
G. Bose award for teaching, a fellow of the Institute of Electrical and
Electronics Engineers, a fellow of the American Academy of Arts
and Sciences, a member of the National Academy of Engineering,
and a fellow of the American Association for the Advancement of
Science. He received the S.B. and the Ph.D. degrees in mathematics
from the Massachusetts Institute of Technology in 1968 and 1973.

59. Ivan E. Sutherland. Ivan E. Sutherland received his B.S. degree
from the Carnegie Institute of Technology, his M.S. degree from the
California Institute of Technology, and his Ph.D. degree from the
Massachusetts Institute of Technology, all in electrical engineering.
He holds honorary degrees from Harvard University, the University
of North Carolina, and the University of Utah. He joined Sun in
1990 as a Sun Fellow, Sun’s highest technical rank. He joined
Portland State University in 2009 to found the Asynchronous
Research Center. He leads a small group working on self-timed
VLSI systems; his group develops self-timed circuit methodologies
and design techniques for fast CMOS circuits and applies them to
new hardware architectures. His book, Logical Effort (1999) with
joint authors Sproull and Harris, describes the mathematics of
designing fast circuits. His 1963 MIT Ph.D., Sketchpad, is widely
known, and he has been called the “father of computer graphics.” He
is author of more than 70 patents, as well as numerous publications
and lectures. Dr. Sutherland holds the 1988 ACM Turing Award,
the 2012 Kyoto Prize and the IEEE Von Neumann Award. He is a
Fellow of the ACM and a member of both the National Academy of
Engineering and the National Academy of Sciences.

60. Andrew Tanenbaum. Andrew S. Tanenbaum has an S.B. degree
from M.I.T. and a Ph.D. from the University of California. He is a
professor emeritus at the Vrije Universiteit in Amsterdam.

A-24

Tanenbaum is the principal designer of three operating systems:
TSS-11, Amoeba, and MINIX, as well as a considerable amount of
other open-source software. In addition, Tanenbaum is the author or
coauthor of five books, which together have been translated in more
than 20 languages and over 175 editions. Tanenbaum has lectured
on a variety of topics all over the world. He has been keynote
speaker at 40 conferences and has given talks at over 100
universities and companies in 15 countries all over North America,
Europe, Asia, and Australia. In 2004, Tanenbaum became an
Academy Professor of the Royal Netherlands Academy of Arts and
Sciences. In 2008, he received a prestigious European Research
Council Advanced Grant. Tanenbaum is a Fellow of the ACM, a
Fellow of the IEEE, and a member of the Royal Netherlands
Academy of Arts and Sciences. In 1994 he was the recipient of the
ACM Karl V. Karlstrom Outstanding Educator Award. In 1997 he
won the ACM SIGCSE Award for Outstanding Contributions to
Computer Science. In 2007 he won the IEEE James H. Mulligan,
Jr., Education Medal. In 2008 he won the USENIX Lifetime
Achievement Award and in 2015 he won the inaugural Eurosys
Lifetime Achievement Award. He has also won numerous other
awards, some of which are on his Wikipedia page. He has two
honorary doctorates.

61. Brad Templeton. Brad Templeton, active in the computer network
community since 1979, was founder and publisher at ClariNet
Communications Corp., the electronic newspaper that was perhaps
the earliest dot-com company. He participated in the building and
growth of USENET from its earliest days, and in 1987 founded and
edited rec.humor.funny, for many years the world’s most widely
read electronic publication. He was the first employee of Personal
Software/Visicorp, the first major microcomputer applications
software company. He later founded Looking Glass Software and
over the years was author of a dozen packaged microcomputer
software products, including VisiPlot for the IBM-PC, various
games, popular tools and utilities for Commodore computers, special
Pascal and Basic programming environments designed for education
(ALICE), an add-in spreadsheet compiler for Lotus 1-2-3 (3-2-1
Blastoff), and various network related software tools. He currently

A-25

is track chair for computing and networks at Singularity University,
a consultant and speaker on self-driving cars, and is on the board of
the Electronic Frontier Foundation and the Foresight Nanotech
Institute. He is Chairman Emeritus of the Electronic Frontier
Foundation.

62. Ken Thompson.* Ken Thompson spent much of his career at Bell
Laboratories where he co-designed and implemented the original
Unix operating system, invented the B programming language that
was a precursor to the C programming language, invented the Bon
programming language, co-developed the Plan 9 operating systems,
developed the CTSS version of the editor QED, developed ed, which
is the standard text editor on Unix, and the definition of the UTF-8
encoding, which is used for more than half of all Web pages.
Thompson also co-developed the software and hardware for Belle,
which was the first computer built for the sole purpose of chess
playing, and it officially became the first master-level machine in
1983. He is currently a Google Advisor and was formerly a
Distinguished Engineer at Google, where he invented new
programming languages (including the Go programming language
as a co-inventor), among other projects. Thompson is a recipient of
numerous awards and commendations in connection with his work
on Unix, including the IEEE Emanuel R. Piore Award (1982), the
Turing Award (1983), the IEEE Richard W. Hamming Medal (1990),
the National Medal of Technology (1999), and the Japan Prize
(2011). He is a member of the National Academy of Sciences and the
National Academy of Engineering. Thompson holds a B.S. and an
M.S., both in Electrical Engineering and Computer Science, from
the University of California, Berkeley. He has been awarded two
honorary Ph.D degrees.

63. Michael Tiemann. Michael Tiemann is a true open source software
pioneer. He made his first major open source contribution more than
three decades ago by adapting the GNU C compiler to support the
C++ language and numerous RISC microprocessors. Tiemann co-
founded Cygnus Solutions, the first open source software company.
Tiemann was the first winner of the Usenix STUG (Software Tools
and User Group) Award in 1996. When Cygnus was acquired by Red
Hat in 2000, Tiemann became Red Hat’s Chief Technical Officer

A-26

(CTO), later becoming its first Vice President of Open Source
Affairs. Tiemann graduated from the Moore School at the
University of Pennsylvania (Class of 1986) with a BS CSE degree,
and later did research at INRIA (1988) and Stanford University
(1988-1989). Tiemann retired as President of the Board at the Open
Source Initiative from 2005-2012.

64. Linus Torvalds. Linus Torvalds is the principal developer of the
Linux kernel, which lies at the heart of the Linux operating system.
Linux runs on billions of devices from cellphones to supercomputers.
Torvalds is a fellow of the Computer History Museum and the Linux
Foundation. He was awarded the Millennium Technology Prize,
IEEE Computer Pioneer Award, NEC C&C Prize, Reed College
Vollum Award, Takeda Award, Lovelace Medal, EFF Pioneer
Award, and inducted into the Internet Hall of Fame. Torvalds holds
an M.S. in computer science from the University of Helsinki.

65. Andrew Tridgell. Dr. Andrew Tridgell is a computer scientist and
free software developer in Canberra, Australia. Best known for his
contributions to the development of the award winning Samba suite
of networking software that enables interoperability with Microsoft
networking services, he has been actively developing in the area of
interoperability for more than 20 years.

66. Jeffrey Ullman. Jeffrey Ullman is the Stanford W. Ascherman
Professor of Engineering (Emeritus) in the Department of Computer
Science at Stanford and CEO of Gradiance Corp. He received a B.S.
degree from Columbia University in 1963 and a Ph.D. from
Princeton in 1966. Prior to his appointment at Stanford in 1979, he
was a member of the technical staff of Bell Laboratories from 1966-
1969, and on the faculty of Princeton University between 1969-1979.
From 1990-1994, he was chair of the Stanford Computer Science
Department. Ullman was elected to the National Academy of
Engineering in 1989, the American Academy of Arts and Sciences in
2012, and has held Guggenheim and Einstein Fellowships. He has
received the Sigmod Contributions Award (1996), the ACM Karl V.
Karlstrom Outstanding Educator Award (1998), the Knuth Prize
(2000), the Sigmod E. F. Codd Innovations award (2006), and the
IEEE von Neumann medal (2010). He is the author of 16 books,

A-27

including books on database systems, compilers, automata theory,
and algorithms.

67. Andries van Dam. Andries van Dam is a Professor of Computer
Science at Brown University, and has served on Brown’s Computer
Science faculty since 1965. He is the author of the widely used
reference books Computer Graphics: Principles and Practice and
Object-Oriented Programming Java: A Graphical Approach. In
1967, Andries co-founded ACM SIGGRAPH, the precursor to
SIGGRAPH. Andries is an IEEE Fellow, an ACM Fellow, and has
been a member of the National Academy of Engineering since 1996.
Andries has won multiple awards, including the Information
Display’s Special Recognition Award (1974), the IEEE Centennial
Medal (1984), the National Computer Graphics Association’s
Academic Award (1990), the ACM SIGGRAPH Steven A. Coons
Award (1991), the L. Herbert Ballou University Professor Chair
(1992), the ACM Karl V. Karlstrom Outstanding Educator Award
(1994), the Thomas J. Watson, Jr. University Professor of
Technology and Education Chair (1995), the IEEE James H.
Mulligan, Jr. Education Medal (1999), and the ACM SIGCSE Award
for Outstanding Contributions to Computer Science Education
(2000). Andries received a B.S. with honors in Engineering Science
form Swarthmore College, a M.S. and Ph.D. from the University of
Pennsylvania, and holds four honorary Ph.D. degrees.

68. Guido van Rossum. Guido van Rossum created the open-source
programming language Python, and is its lead developer and
thought leader. Python is widely used in industry, and is the most
popular introductory teaching language at top U.S. universities.
Guido developed the Python language while at CWI in Amsterdam.
After moving to the United States, he worked as a guest researcher
at NIST, at CNRI, and at several start-up companies. He became a
Senior Staff Engineer at Google, and is currently a principal
engineer at Dropbox. Guido is an ACM Distinguished Engineer and
a recipient of several awards including the USENIX STUG Award,
the NLUUG Award, the Free Software Foundation Award, and the
Dr. Dobb’s Journal 1999 Excellence in Programming Award. In
2013, Python was awarded the Dutch National ICT COMMIT/

A-28

Award. Guido holds an M.S. in Mathematics and Computer Science
from the University of Amsterdam.

69. John Villasenor. John Villasenor is on the faculty at UCLA, where
he is a professor of electrical engineering, public policy, and
management, as well as a visiting professor of law. He is also a
nonresident senior fellow at the Brookings Institution and a visiting
fellow at the Hoover Institution. Professor Villasenor’s research
considers communications and information technologies and their
broader ramifications, and has addressed topics including
cybersecurity, autonomous vehicles, and digital media policy.
Professor Villasenor is a member of the Council on Foreign
Relations and a former vice chair of the World Economic Forum’s
Global Agenda Council on the Intellectual Property System. He
holds an M.S. and Ph.D. in electrical engineering from Stanford
University, and a B.S. in electrical engineering from the University
of Virginia. Professor Villasenor has previously served as, though is
not currently serving as, a consultant to Google in relation to the
Oracle v. Google matter.

70. Jan Vitek. Jan Vitek is a Professor of Computer Science at
Northeastern University. He is the past Chair of the ACM Special
Interest Group on Programming Languages (SIGPLAN), the vice
chair of AITO and of the IFIP WG 2.4, and is Chief Scientist at Fiji
Systems. He holds a Ph.D. from the University of Geneva and an
MSc from the University of Victoria. He works on various aspects of
programming languages including virtual machines, compilers,
software engineering, real-time and embedded computing,
concurrency and information security. Professor Vitek led the Ovm
project which resulted in the first successful flight test of real-time
Java virtual machine. With Noble and Potter, Vitek proposed the
notion of ownership for alias control, which became known as
ownership types. He chaired PLDI, ISMM and LCTES and was
program chair of ESOP, ECOOP, VEE, Coordination, and TOOLS.

71. Philip Wadler. Philip Wadler is a Professor of Theoretical Computer
Science at the University of Edinburgh and Senior Research Fellow
at IOHK. He is an ACM Fellow and a Fellow of the Royal Society of
Edinburgh, past chair of ACM SIGPLAN, past holder of a Royal

A-29

Society-Wolfson Research Merit Fellowship, winner of the SIGPLAN
Distinguished Service Award, and a winner of the POPL Most
Influential Paper Award. Previously, he worked or studied at
Stanford, Xerox Parc, CMU, Oxford, Chalmers, Glasgow, Bell Labs,
and Avaya Labs, and visited as a guest professor in Copenhagen,
Sydney, and Paris. He has an h-index of 66 with more than 22,000
citations to his work, according to Google Scholar. He contributed to
the designs of Haskell, Java, and XQuery, and is a co-author of
Introduction to Functional Programming (Prentice Hall, 1988),
XQuery from the Experts (Addison Wesley, 2004) and Generics and
Collections in Java (O’Reilly, 2006). He has delivered invited talks
in locations ranging from Aizu to Zurich.

72. James H. Waldo. James “Jim” Waldo is the Gordon McKay
Professor of the Practice of Computer Science in the School of
Engineering and Applied Sciences at Harvard, where he is also the
Chief Technology Officer. Jim is also a professor of technology policy
at the Harvard Kennedy School. Previously, Jim designed clouds at
VMware, and was a Distinguished Engineer at Sun Microsystems,
where he investigated next-generation large-scale distributed
systems. He was the lead architect for Jini, a distributed
programming system based on Java. Before joining Sun, Jim spent
eight years at Apollo Computer and Hewlett Packard, working in
the areas of distributed object systems, user interfaces, class
libraries, text and internationalization. While at HP, he led the
design and development of the first Object Request Broker, and was
instrumental in getting that technology incorporated into the first
OMG CORBA specification. Jim edited the book The Evolution of
C++: Language Design in the Marketplace of Ideas (MIT Press), co-
edited Engaging Privacy and Information Technology in a Digital
Age (National Academies Press), and was one of the authors of The
Jini Specification (Addison Wesley). More recently, he authored
Java: The Good Parts. He is currently a member of the editorial
boards of Queue magazine and Communications of the ACM. He
holds over 50 patents. Jim received his Ph.D. from the University of
Massachusetts (Amherst). He holds two M.A. degrees from the
University of Utah.

A-30

73. Dan Wallach. Dan Wallach is a professor in the Department of
Computer Science and a Rice Scholar at the Baker Institute for
Public Policy at Rice University in Houston, Texas. His research
considers a variety of different computer security topics, ranging
from web browsers and servers through Java security, electronic
voting technologies, and smartphones. Wallach is a former member
of the Air Force Science Advisory Board and a former member of the
USENIX Association Board of Directors.

74. Peter Weinberger.* Peter Weinberger is a computer scientist at
Google. Previously, he was Chief Technology Officer at Renaissance
Technologies and held many positions at Bell Labs, including
Information Sciences Research Vice President where he was
responsible for computer science research, math and statistics, and
speech. As a scientist at Bell Labs he worked on Unix, contributing
to the design and implementation of the AWK programming
language, the IO library for f77, the fast factoring program qfactor,
the B-tree library cbt, a code generator for C, and a network file
system. He did research on topics including operating systems,
compilers, security, and number theory. Before joining Bell Labs, he
taught in the Department of Mathematics at the University of
Michigan, Ann Arbor. He holds a B.S. from Swarthmore and a Ph.D.
from the University of California, Berkeley.

75. Steve Wozniak. Steve Wozniak co-founded Apple and invented the
Apple I and Apple II computers. He holds a B.S. in Electrical
Engineering and Computer Science from UC Berkeley, and
honorary doctorates from twelve universities. Wozniak is Innovator
in Residence at High Point University. He founded many companies
including CL 9, which brought the first programmable universal
remote control to market in 1987, Wheels of Zeus (WOZ), and
Acquicor Technology. He was Chief Scientist at Fusion-io and at
Primary Data. He designed calculators for Hewlett-Packard and
taught computer science to elementary school students and their
teachers. Wozniak won numerous awards including the ACM Grace
Murray Hopper Award, the National Medal of Technology (with
Steve Jobs), the IEEE Hoover Medal, the Heinz Award for
Technology, the American Humanist Association Isaac Asimov
Science Award, the Global Award of the President of Armenia for

A-31

Outstanding Contribution to Humanity Through IT, the Young
Presidents’ Organization Lifetime Achievement Award, the Cal
Alumni Association Alumnus of the Year Award, and the Legacy for
Children Award from the Children’s Discovery Museum in San Jose.
He was named a Fellow of the Computer History Museum “for co-
founding Apple Computer and inventing the Apple I personal
computer,” and inducted into the National Inventors Hall of Fame,
the Manufacturing Hall of Fame, and the Consumer Electronics
Hall of Fame.

76. Frank Yellin.* Frank Yellin has spent over a decade working on
runtime systems for interpreted and compiled languages. As a Staff
Engineer in Embedded and Consumer at Sun Microsystems, he was
an original member of the Java project. Yellin is co-author of The
Java Virtual Machine Specification (Addison-Wesley, 1999), and co-
authored the first version of the Java API specification. Previously
he worked at Lucid, where he focused on multitasking, garbage
collection, interrupts, and the compilation of Common Lisp. Yellin
currently is a Staff Software Engineer at Google, where he works on
automatic scalable security testing. He holds an A.B. in Applied
Mathematics from Harvard and an M.S. in Computer Science from
Stanford. He is the inventor or co-inventor of sixteen patents.

